

USER'S GUIDE

Installation & Operation Instructions

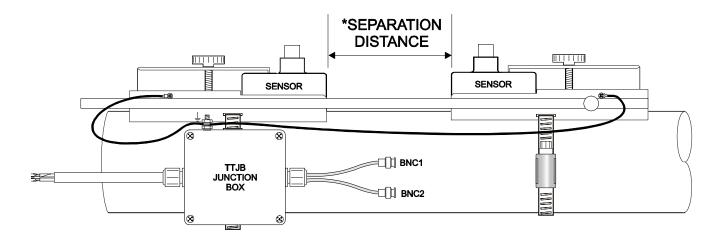
Transit Time Flow Meter

Model TTFM 1.0

Manual Series A.3.5

Note: This page has been left blank intentionally.

INDEX


SENSOR INSTALLATION	4
CONNECTIONS	5
KEYPAD SYSTEM	8
CALIBRATION MENU	9
ICONS	10
MESSAGE ICON	11
STATUS	11
PASSWORD	12
UNITS/MODE	13
SET UP	14
CALIBRATION	16
RELAY PARAMETERS	17
SPECIAL FUNCTIONS	18
SENSOR MOUNTING	20
ENCLOSURE INSTALLATION	25
FIELD TROUBLESHOOTING	26
COMMON QUESTIONS AND ANSWERS	29
APPLICATIONS HOTLINE	31
PRODUCT RETURN PROCEDURE	31
APPENDIX A – OPTIONS	34
DATA LOGGING	38
SPECIFICATIONS	40
APPENDIX B - CONVERSION TABLE	41
PIPE CHARTS	42
APPENDIX C – LIQUID SPEED OF SOUND	46

IMPORTANT NOTE: This instrument is manufactured and calibrated to meet product specifications. Please read this manual carefully before installation and operation. Any unauthorized repairs or modifications may result in a suspension of the warranty.

If this product is not used as specified by the manufacturer, protection may be impaired. Available in Adobe Acrobat pdf format

SENSOR INSTALLATION

^{*} Shown in 'Setup' display after pipe dimensions are entered.

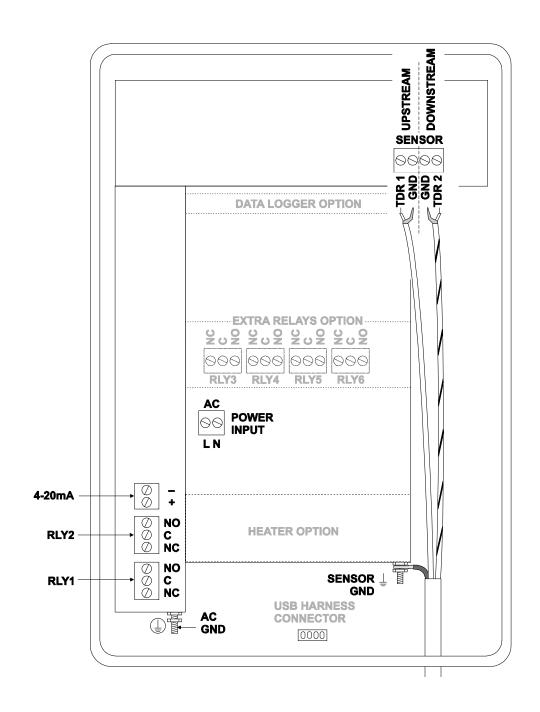
CONNECTIONS:

POWER INPUT: The standard model requires AC power input between 100 to 240 VAC 50/60Hz. No adjustments are necessary for voltages within this range. Connect L (Live) N (Neutral) and AC Ground.

Optional DC input model requires 9-32 VDC/9 Watts. Connect to + and - terminals.

Optional Thermostat and Heater modules are available rated for 115 VAC or 230 VAC.

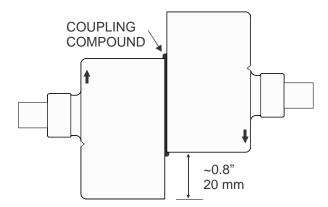
IMPORTANT NOTE: To comply with CSA/UL electrical safety standards, AC power input and relay connection wires must have conduit entry to the instrument enclosure. Installation requires a switch, overcurrent fuse or circuit breaker in the building (in close proximity to the equipment) that is marked as the disconnect switch.


Risk of electric shock. Loosen cover screw to access connections. Only qualified personnel should access connections.

Note: Use of instrumentation over 40°C ambient requires special field wiring.

Note: User replaceable fuse is 2 Amp 250V (T2AL250V), located on the power supply.

CONNECTIONS

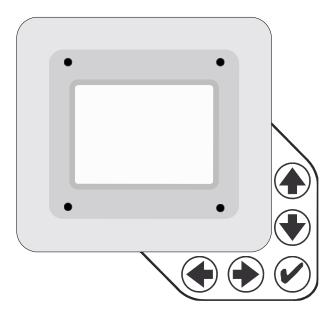

QUICK BENCH TEST:

In the TTFM Setup menu set parameters to perform a bench test:

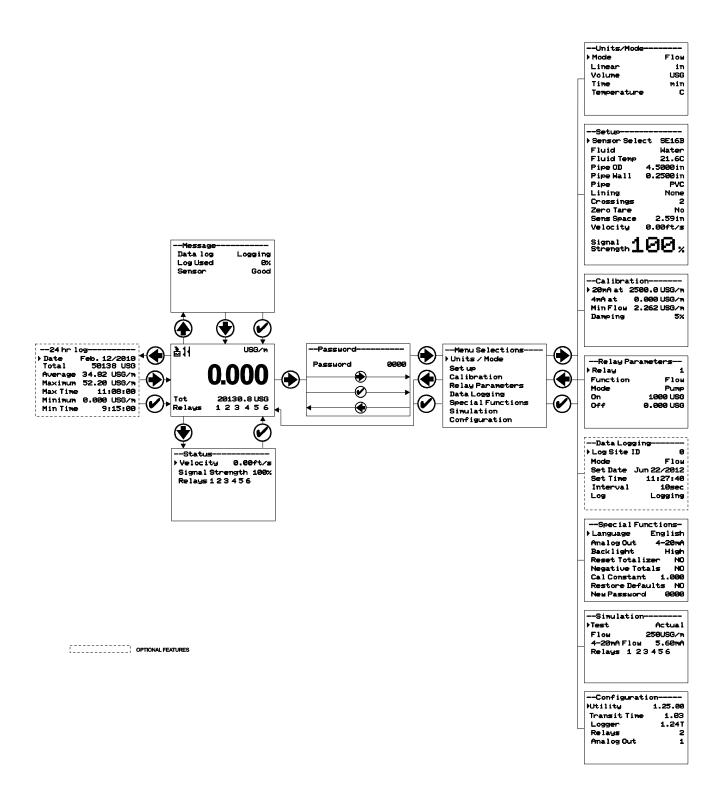
- Set Fluid = Water
- Set Temperature = 20°C
- Set Pipe OD = 0.15 inch
- Set Pipe Wall = 0.06 inch
- Set Pipe material = ABS
- Set Lining = None
- Set Crossings = 4
- Press **▼** to view Signal Strength at bottom of menu.

Apply coupling compound to the face of sensors and press together as indicated in the illustration below.

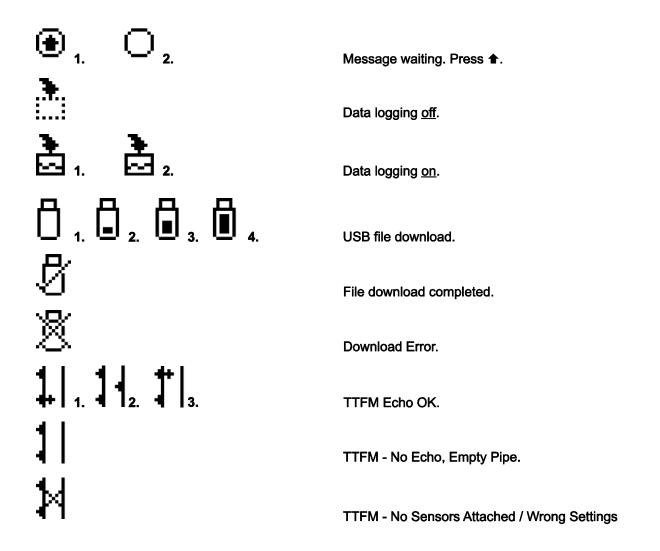
The menu should indicate large Signal Strength display.



KEYPAD SYSTEM


The diagram on page 9 shows the TTFM 1.0 menu system. Arrows show the four directions to leave a menu box. Pressing a corresponding keypad arrow will move to the next item in the direction shown. Move the cursor (highlighted) under numerals and increase or decrease numerals with the ♠ and ♣ keys.

To store calibration values permanently (even through power interruptions), press the \checkmark .



CALIBRATION MENU

ICONS

à11

USG/m

0.000

Tot Relays 20130.8 USG 1 2 3 4 5 6

--Message-----Datalog Logging
LogUsed 0%
Sensor Good

--Status------> Velocity 0.00ft/s Signal Strength 100% Relays 1 2 3 4 5 6

MAIN DISPLAY

The MAIN display shows the units selected from the Units/Mode menu, Flow or Velocity rate being measured, TOTALIZER and RELAY states. The TTFM 1.0 will start-up with this display.

MESSAGE ICON

Press ♠ from the MAIN display to view status of the data logger and error/warning messages provided by the instrument. The Message Icon will appear on the MAIN display if error messages are being generated by the instrument. Press ✓ to return to the main display.

STATUS

Press ♣ from the MAIN display to view instrument status.

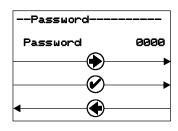
Velocity Displayed in ft/sec or m/sec.

Signal Strength Displays magnitude of signal being received by the ultrasonic

sensor.

Relays Energized relays will display as a white character on a

black background.


--24 hr log-----
Date Feb. 12/2010

Total 50138 USG
Average 34.82 USG/m
Maximum 52.20 USG/m
Max Time 11:08:00

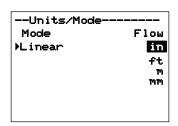
Minimum 0.000 USG/m
Min Time 9:15:00

24 HR LOG (Data Logging option only)

Press from the MAIN display to view a formatted flow report from instruments with a built-in data logger. Press to scroll down one day or repeatedly to scroll to a specific date. Up to 365 days can be stored. Newest date will overwrite the oldest. Press ✓ to return to the main display.

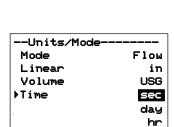
PASSWORD

The password (a number from 0000 to 9999) prevents unauthorized access to the Calibration menu.


From the Main display press the → key to get to Password. Factory default password is 0000 and if it has not been changed press the ✓ to proceed to the Menu Selections screen.

If a password is required, press → to place the cursor under the first digit and ↓ or ↑ to set the number, then → to the second digit, etc. Press → or ✓ to proceed to the Menu Selections screen.

A new password can be stored by going to Special Functions/New Password.



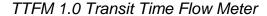
Units/Mode	
▶Mode	Flow
Linear	in
Volume	USG
Time	min
Temperature	С

--Units/Mode----

Mode Linear ≯Volume

min

UNITS/MODE


From \blacktriangleright Mode press the \Rightarrow and then the \spadesuit or \blacktriangledown to select Flow or Velocity. Flow mode displays the flow rate in engineering units (e.g. gpm, litres/sec, etc.) Press the \checkmark to store your selection then the \blacktriangledown to the next menu item and \Rightarrow to enter.

From \blacktriangleright Linear press the \blacktriangleright key and then the \spadesuit or \blacktriangledown to select your units of measurement. Press the \checkmark to store your selection.

Press the \blacksquare key to move the \blacktriangleright symbol to each subsequent menu item and the \checkmark to save your selections.

Note: the volume selection "bbl" denotes U.S. oil barrel.

Press ← or ✓ to return to the Menu Selections screen.

-Setup-▶ Sensor Select SE16B Fluid Water Fluid Temp 21.6C Pipe OD 4.5000in Pipe Wall 0.2500in PVC Pipe Lining None Crossings 2 Zero Tare No Sens Space 2.59in 0.00ft/s Velocity

Signal 166 %

SET UP

Sensor Select Choose SE16B.

Fluid Vel When Fluid = Other – Enter the fluid velocity at 25C

from table or other reference in units of m/s

 $\Delta V/C(@25C)$ When Fluid = Other – Enter fluid velocity adjustment

factor over change in temperature in units of m/s per °C.

Fluid Select fluid type.

Other will require additional information.

Fluid Temp Enter average fluid temperature.

Pipe OD Highlight the digits and then **♣** or **↑** to change the

numbers and decimal point. Pipe OD should be entered as the exact outside diameter of the pipe where the sensor is mounted. Refer to the Pipe Charts Appendix in this manual for outside diameter of common pipe types and

sizes.

Pipe Wall Enter wall thickness.

Refer to the Pipe Charts Appendix in this manual for

thickness of common pipe materials and sizes.

Pipe Vel When pipe = Other – Enter pipe material speed of sound

(consult factory).

Pipe Select pipe material.

Lining Thick When Lining – Enter lining thickness

Lining Vel When Lining = Other – Enter speed of sound of lining

material.

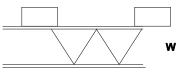
Lining Select Lining material.

None represents no liner. Other will require additional

information.

TTFM 1.0 Transit Time Flow Meter

Crossings


1 = Z mounting

Z

2 = V mounting

,

4 = W mounting

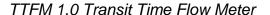
Zero Tare To suppress readings or fluctuations at zero flow. Set

Calibration/Damping to 5% and under no flow conditions

and full pipe select Yes to force readings to zero.

Sens Space Displays the calculated sensor spacing

Velocity Displays the measured velocity.


Signal Strength Displays magnitude of signal being received by the

ultrasonic sensor.

Press ✓ to return to Menu Selections.

NOTE: Sensor separation distance is automatically calculated by

the instrument and will be displayed in the Setup menu

--Calibration----> 20mA at 2500.0 USG/m
4mA at 0.000 USG/m
Min Flow 2.262 USG/m
Damping 5%

CALIBRATION

Press ♣ to ▶ Calibration and ➡ to enter. Use ♣ or ♠ to position ▶ before each menu item and ➡ to enter. When settings are completed press ✓ to store and return to the Calibration menu.

Press → then ↓ or ♠ to change the numbers and decimal point. Use this menu to set the corresponding flow rate that will be represented by 20mA analog output. If maximum flow is unknown, enter an estimated flow rate and observe actual flow to determine the correct maximum value. Any velocity or flow rate up to +40

ft/sec (12.2 m/sec) may be selected.

4mA at Press **▼** or **↑** to set the flow rate corresponding to 4mA

analog output. This setting may be left at zero flow (or velocity or can be raised to any value less than the 20mA setting, or lowered to any velocity or corresponding flow

rate down to -40 ft/sec (-12.2 m/sec).

Min Flow Flow rates below this setting will be displayed as zero

flow.

Damping Increase damping to stabilize readings under turbulent

flow conditions. Decrease for fast response to small changes in flow. Damping is shown in percentage (maximum is 99%). Factory default is 20%.

Press ✓ to return to Menu Selections.

--Relay Parameters--Relay 1 Function Flow Mode Pump On 1000 USG Off 0.000 USG

RELAY PARAMETERS

Relay Press \Rightarrow and \clubsuit or \spadesuit to select a corresponding relay number (2)

relays are standard, 4 additional are optional).

Function Press ♥ or ♠ to select Off, Pulse or Flow.

Flow Mode Select Pump, Low Alarm or Hi Alarm.

Pump mode provides separate On/Off settings where the relay will energize at one flow rate and de-energize at another.

On Highlight the numerals and press \blacksquare or \spadesuit to set digits to the required relay On set point.

Off set digits to the required Off set point.

Low Alarm mode relay will energize at a programmable flow rate and remain energized with flow below the set point. When flow rises above the set point, the relay will de-energize.

Hi Alarm mode relay will energize at a programmable flow rate and remain energized with flow above the set point. When flow falls below the set point, the relay will de-energize.

Pulse Press ♣ and set digits to the flow volume increment required

between relay pulses. Use this feature for remote samplers, chlorinators or totalizers. Minimum time between pulses is 2.25 seconds and pulse duration is 350 milliseconds.

Return to Relay and change settings for each relay number.

Press ✓ to return to Menu Selections.

DATA LOGGING (OPTIONAL)

Refer to Options section of this manual.

--Special Functions-Language English Analog Out 4-20mA Backlight High Reset Totalizer NO Negative Totals NO Cal Constant 1.000 Restore Defaults NO New Password 0000

SPECIAL FUNCTIONS

Language Select English, French or Spanish

Analog Out Select 4-20mA or 0-5V mode for the analogue

output.

Backlight Select High, Medium or Low for continuous

backlight.

Select Key Hi/Lo for high backlight for 1 minute after a keypress and then Lo backlight until a key

is pressed again.

Select Key High, Med or Low for backlight for 1 minute after a keypress and then backlight off until

a key is pressed again.

Reset Totalizer Press → and select Yes to erase and restart the

totalizer at zero.

Negative Totals Select Yes to have reverse flow readings deducted

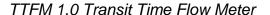
from the totalizer. Select No to totalize forward

flow only and ignore reverse flow.

Cal Constant Factory set during calibration. (Refer to the

calibration certificate supplied with your instrument.)

Restore Defaults Select Yes and press ✓ to erase all user settings


and return the instrument to factory default settings.

New Password Select any number from 0000 to 9999 and press ✓.

Default setting of 0000 will allow direct access to the calibration menus. Setting of any password greater than 0000 will require the password to be entered to

access the calibration menus.

Press ✓ to return to Menu Selections.

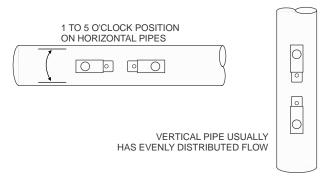
--Simulation----->Test Actual Flow 250USG/m 4-20mA Flow 5.60mA Relays 1 2 3 4 5 6

SIMULATION

Exercises the 4-20mA output, digital display and control relays.

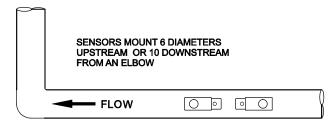
Simulate a Flow/Velocity reading. Press \Rightarrow and then \clubsuit or \spadesuit to change the simulated output. Press \checkmark to begin simulation. The 4-20mA output and relay states will be displayed on the screen below.

Press the ✓ to terminate simulation and return to the Menu Selections screen.



SENSOR MOUNTING LOCATION

The position of the sensor is one of the most important considerations for accurate Transit Time flow measurement. The same location guidelines apply to Transit Time as most other types of flow meters.

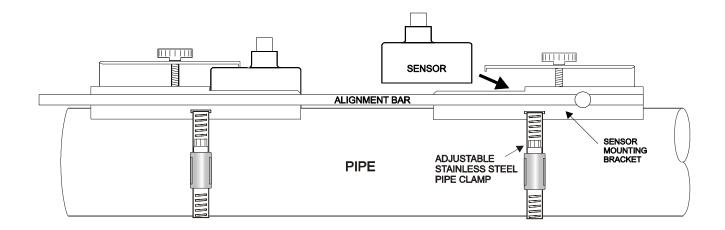

Before permanently mounting a Transit Time sensor onsite testing is recommended to determine optimum mounting position. Use the sensor coupling compound (supplied with each Greyline flow meter, or petroleum gel, acoustic compound or electrocardiograph gel). Take several readings around the axis of the pipe and then at several points upstream and downstream from the selected position, checking for consistent readings. Avoid high or low reading areas. Mount the sensors where consistent (average) readings were obtained or continue testing on another pipe section.

VERTICAL OR HORIZONTAL PIPE - Vertical pipe runs generally provide evenly distributed flow. On Horizontal pipes and liquids with high concentrations of gas or solids, the sensors should be mounted on the side (1 to 5 o'clock positions) to avoid concentrations of gas at the top of the pipe, or solids at the bottom.

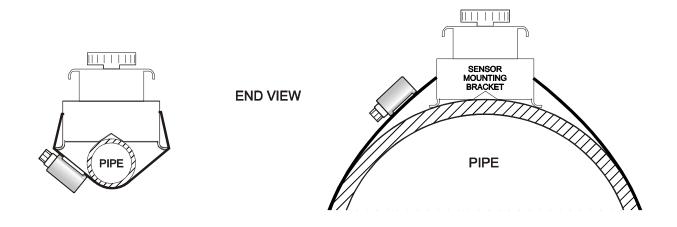
VELOCITY INCREASING DEVICES: Generally the sensors must be mounted away from flow disturbances such as valves, pumps, orifice plates, venturis or pipe inlets and discharges which tend to increase flow velocity. Velocity increasing devices often cause cavitation, or rapid release of gas bubbles, and readings both up and downstream may be intermittent or inaccurate. As a guideline, mount the sensor at least 20 diameters upstream or 30 diameters downstream from velocity increasing devices.

Required distance from a velocity increasing device will vary in applications depending on the flow velocity and the characteristics of the liquid itself.

TURBULENCE INCREASING DEVICES: Elbows, flanged connections and tees tend to introduce desirable conditions of an evenly distributed flow profile. Sensor mounting 6 pipe diameters upstream and 10 diameters downstream from these disturbances is generally optimum.

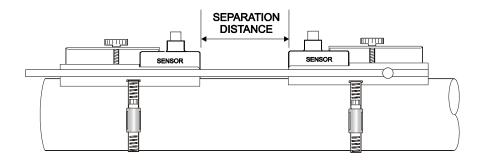

The sensors are designed to mount longitudinally on a straight section of pipe. Do not attempt to mount it on bends, elbows or fittings.

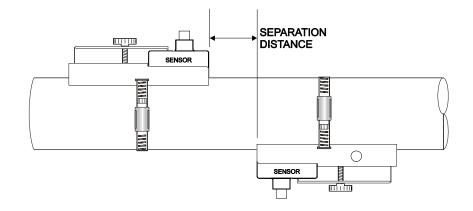
SENSOR MOUNTING

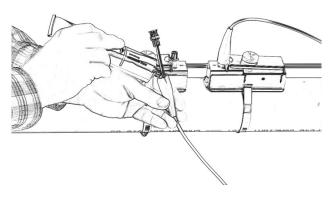

Prepare an area 2" wide by 4" long (50mm x 100mm) for sensor bonding by removing loose paint, scale and rust. The objective of site preparation is to eliminate any discontinuity between the sensor and the pipe wall, which would prevent acoustical coupling.

A TMK1 Sensor Mounting Kit is supplied with each Greyline flow meter. It includes recommended coupling compound in a plastic applicator and a stainless steel mounting bracket with adjustable pipe straps. Use the Alignment Bar (included) to align sensor brackets for V and W mode mounting.

Mount the PC16 Mounting Bracket as illustrated on pipes 0.6" / 15 mm OD or larger. Stainless steel bands are included for mounting on pipes up to 30" / 750 mm OD.


Additional stainless steel bands (by customer) may be combined to mount on larger pipes.



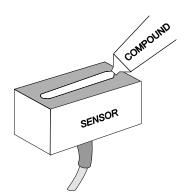


SEPARATION DISTANCE

Measure separation distance with a ruler or tape measure. Separation distance is automatically calculated by the TTFM 1.0 based on parameters entered in the Set-up menu. Sens Space is displayed in the Setup menu.

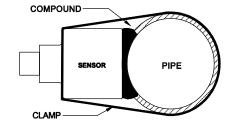
Transducer Installation in Wet Locations

The TTFM 1.0 Transit Time Flowmeter transducers are rated for accidental submersion up to 10 psi (0.75 bar). The flowmeter will continue to operate and measure flow accurately during periods of submergence. Plastic seal jackets on the cables can be filled with coupling compound to provide additional moisture protection for the BNC cable connectors.



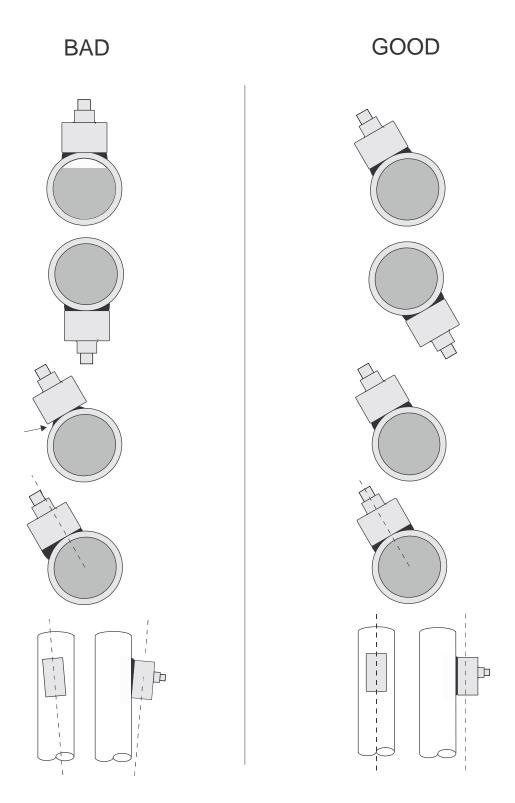
SENSOR COUPLING

For permanent or temporary bonding, the following are recommended:


- a) Dow Corning silicon compound #4 (supplied) Additional supply: order Greyline Option CC
- b) Water-based sonic compound: Order Greyline Option CC30
- c) Electrocardiograph gel
- d) Petroleum gel (Vaseline)

The above are arranged in their order of preferred application. d & e are only good for temporary bonding at room temperature. DO NOT USE: Silicon RTV caulking compound (silicon rubber).

Use the pipe clamp and rail (supplied) as illustrated on previous page or use a loop of electrical tape for temporary mounting. Apply silicon coupling compound #4 to the colored face of the sensor. A bead, similar to toothpaste on a toothbrush, is ideal. Do not overtighten (crush the sensor).

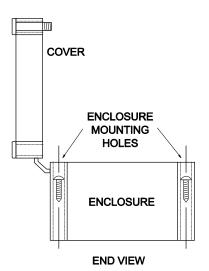

The sensor must be fixed securely to the pipe with coupling material between the sensor face and the pipe. Sensor installation with excessive coupling compound can result in gaps or voids in the coupling and cause errors or loss of signal. Insufficient coupling compound will create similar conditions.

Over time temporary coupling compounds (e.g. Petroleum Gel) may gradually sag away from the sensor resulting in reduced signal strength and finally complete loss of signal. Warm temperatures, moisture and vibration will accelerate this process. Dow Corning Silicone Compound #4 as supplied with the TTFM 1.0 (and available from Greyline Instruments) is recommended for semi-permanent installations.

SENSOR MOUNTING/COUPLING RECOMMENDATIONS

ENCLOSURE INSTALLATION

Locate the enclosure within 20 ft (6 m) of the sensor (250 ft - 75 m optional). The enclosure can be wall mounted with the four mounting screws (included) or panel mounted with Option PM Panel Mount kit from Greyline Instruments.


Avoid mounting the enclosure in direct sunlight to protect the electronics from damage due to overheating and condensate. In high humidity atmospheres, or where temperatures fall below freezing, Option TH Enclosure Heater and Thermostat is recommended. Seal conduit entries to prevent moisture from entering enclosure.

NEMA4X (IP66) WITH CLEAR COVER

- 1. Open hinged enclosure cover.
- 2. Insert #12 screws (supplied) through the four enclosure mounting holes to secure the enclosure to the wall or mounting stand.

Additional conduit holes can be cut in the bottom of the enclosure when required. Use a hole saw or Greenlee-type hole cutter to cut the required holes.

DO NOT make conduit/wiring entries into the top of the enclosure.

Note: This non-metallic enclosure does not automatically provide grounding between conduit connections. Grounding must be provided as part of the installation. Ground in accordance with the requirements of the National Electrical Code. System grounding is provided by connecting grounding wires from all conduit entries to the steel mounting plate or another point which provides continuity.

CLEANING

Cleaning is not required as a part of normal maintenance.

FIELD TROUBLESHOOTING

Possible Causes:	Corrective Action:		
METER READING WHEN THERE IS NO FLOW?			
Erratic measurement (set damping to 0% to check) due to electrical noise or poor signal quality.	 Set Calibration/ Damping to 5% with zero flow use Setup / Tare function. Ensure all Flowmeter wiring is in METAL conduit and sensor shield is properly connected to Ground. Ensure correct power input Ground connection (<1 ohm resistance). Ensure 4-20mA Shield connected to Instrument Ground stud. Try adjusting sensor spacing (+/- 10%) and contact Greyline for further assistance. Adjust Calibration / Min Flow setting. 		
Variable Speed Drive interference	 Follow Drive manufacturers wiring and Grounding instructions Relocate Flowmeter electronics, Sensor and wiring away from VSD 		
Sensor cable connections incorrect or loose	Refer to Connections diagram. Disconnect and reconnect sensor cables ensuring that cable is properly inserted into terminals and tightened.		
METER READING LOWER THAN EXPECTED?			
Calibration Error	Review calibration menu. Pipe dimensions and fluid selection/fluid velocity.		
Lower flow rate than expected	Investigate pump/valves. Compare velocity with alternate instrument.		
Erratic measurement (set damping to 0% to check) due to electrical noise or poor signal quality.	 Ensure all Flowmeter wiring is in METAL conduit and sensor shield is properly grounded. Ensure correct power input Ground connection (<1 ohm resistance). Ensure 4-20mA Shield connected to Instrument Ground stud. Try adjusting sensor spacing (+/- 10%) and contact Greyline for further assistance. 		

Possible Causes:	Corrective Action:		
NO ECHO INDICATION Icon: No Echo			
Sensor Connections	 Check sensor connections at TTFM and at sensor junction box. Note: Refer to Sensor Cable Resistance Test t test final connections. 		
Sensors not mounted to Pipe or mounted improperly	Apply coupling compound and mount sensors to pipe with proper sensor spacing.		
Empty pipe or partially filled	Pipe must be fluid filled and acoustically transparent in order to obtain echoes.		
Coupling compound washed out, or sensor loose on pipe.	Remount sensorUse Dow Corning Silicone #4		
METER READING HIGHER THAN EXPECTED?			
Calibration Error	Review calibration menu. Pipe dimensions and fluid selection/fluid velocity.		
Higher flow rate than expected	Investigate pump/valves. Compare velocity with alternate instrument.		
Erratic measurement (set damping to 0% to check) due to electrical noise or poor signal quality.	 Ensure all Flowmeter wiring is in METAL conduit and sensor shield is properly grounded. Ensure correct power input Ground connection (<1 ohm resistance). Ensure 4-20mA Shield connected to Instrument Ground stud. Try adjusting sensor spacing (+/- 10%) and contact Greyline for further assistance. 		
Pipe not Full	Verify pipe is full by mounting sensors at top of pipe and check echo icon. No echo if pipe is not full.		
High viscosity fluid	Laminar flow profile due to high viscosity fluid requires an adjustment to Cal Const.		

SENSOR CABLE RESISTANCE TEST

Unplug the green sensor terminal from the Transit Time board and connect the sensor wires. With a multimeter, perform resistance checks for each set of wires. One single loose terminal may cause false readings.

Test across shield and core of each wire: TDR1 (black) and TDR2 (black/white). Resistance should be around 10K ohms for any cable length. High readings indicate an open circuit and low readings indicate a short or partial short in the sensor cable connections.

Note: The TTFM 1.0 will automatically detect connectivity to the sensors. Confirm that TTFM 1.0 indicates "Sensor Good' in the messages menu.

COMMON QUESTIONS AND ANSWERS

The pipe vibrates. Will it affect the flow meter?

Common vibration frequencies are far lower than the sonic frequencies used by the Greyline flow meter, and will not normally affect accuracy or performance. However, applications where very weak Transit Time signal is present (when sensitivity is adjusted to maximum and signal strength is low), accuracy may be affected by pipe vibration, or the flow meter may show readings under no-flow conditions. Attempt to relocate the sensor on a pipe section where vibration is reduced, or arrange pipe mounting brackets to reduce vibration at the sensor mounting location.

The flow meter must be installed in a high noise environment. Will this affect operation? Greyline flow meters are designed to discriminate between environmental noise and the Transit Time signal. High noise environments may affect the flow meter's performance where low signal strength and/or low flow velocities are being measured. Relocate the sensor in a quieter environment if possible.

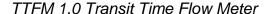
Will pipe corrosion affect accuracy of the flow meter?

Yes. Rust, loose paint etc. must be removed from the outside of the pipe to provide a clean mounting position when installing a Transit Time sensor. Severe corrosion/oxidation on the inside of the pipe may prevent the Transit Time signal from penetrating into the flow. If the pipe cannot be cleaned, a spool piece (PVC recommended) should be installed for sensor mounting.

What effect do pipe liners have on the flow meter?

The air gap between loose insertion liners and the pipe wall prevent the Transit Time signal from entering the flow. Better results can be expected with bonded liners such as cement, epoxy or tar, however an on site test is recommended to determine if the application is suitable for a Transit Time flow meter.

Why is Transit Time recommended for clean liquids?


The Transit Time sensor transmits sound across the flow stream in order to measure sound velocity and therefore requires a fluid medium that is relatively transparent to the acoustic signal. The Transit Time system will not function when there is high volume of solids or aeration. As a guideline, Greyline Transit Time flow meters are recommended for clean liquids with solids or bubbles content less than 2%. Most applications such as water, chemicals and oils will meet this minimum requirement.

Can the sensor be submerged in water?

Yes, for short periods of time or by accident, but it is not recommended for continuous operation. The sensor is constructed to withstand submersion to 10 psi (0.7 Bar) without damage.

What is the purpose of the Signal Strength Display?

The primary function of the signal strength display is to assist as a feedback when mounting sensors. Signal Strength can also be a useful diagnostics tool when troubleshooting problems with an installation. A low signal strength (< 20%) will cause the TTFM to be more susceptible to environmental noise and may indicate a problem with the installation or other qualitative issues.

Can I change the length of the sensor cable?

Yes. Technological advances in Greyline Transit Time design allow cable lengths up to 250 ft (75 m). Extended cable (Greyline Option DXC) should be installed in rigid or flexible conduit for mechanical protection. Use only Greyline shielded coaxial pair (RG174U) cable. BNC coaxial connectors (TV cable type) are not recommended for cable splices.

Does the TTFM 1.0 require periodic recalibration?

TTFM 1.0 calibration does not drift over time. The solid state sensor has no moving parts to wear and affect calibration. All Greyline timing/counting circuits use crystal-controlled frequency references to eliminate any drift in the processing circuitry.

ISO 9000 or similar quality management systems may require periodic and verifiable recalibration of flow meters. TTFM 1.0 Flow Meters may be returned to Greyline for factory calibration and issue of a new NIST traceable certificate. Refer to the 'Product Return Procedure' section of this manual for return instructions.

APPLICATIONS HOTLINE

For applications assistance, advice or information on any Greyline Instrument contact your Sales Representative, write to Greyline or phone the Applications Hotline below:

United States: Tel: 315-788-9500 Fax: 315-764-0419 Canada: Tel: 613-938-8956 Fax: 613-938-4857

Toll Free: 888-473-9546
Email: info@greyline.com
Web Site: www.greyline.com

Greyline Instruments Inc.

Canada USA:

16456 Sixsmith Drive 11451 Belcher Road South

Long Sault, Ont. K0C 1P0 Largo, FL 33773

PRODUCT RETURN PROCEDURE

Instruments may be returned to Greyline for service or warranty repair.

1 Obtain an RMA Number from Greyline -

Before shipping a product to the factory please contact Greyline by telephone, fax or email to obtain an RMA number (Returned Merchandise Authorization). This ensures fast service and correct billing or credit.

When you contact Greyline please have the following information available:

- 1. Model number / Software Version
- 2. Serial number
- 3. Date of Purchase
- 4. Reason for return (description of fault or modification required)
- 5. Your name, company name, address and phone number

2 Clean the Sensor/Product -

<u>Important</u>: unclean products will not be serviced and will be returned to the sender at their expense.

- 1. Rinse sensor and cable to remove debris.
- 2. If the sensor has been exposed to sewage, immerse both sensor and cable in a solution of 1 part household bleach (Javex, Clorox etc.) to 20 parts water for 5 minutes. Important: do not immerse open end of sensor cable.
- 3. Dry with paper towels and pack sensor and cable in a sealed plastic bag.
- 4. Wipe the outside of the enclosure to remove dirt or deposits.
- 5. Return to Greyline for service.

FLOW METER DATA SHEET

Tel: [] 114	56 Sixsmith Drive, Long Sault, ON KOC 1P0 613-938-8956 / Fax: 613-938-4857 51 Belcher Road South, Largo, FL 33773 315-788-9500 / Fax: 315-764-0419	Please complete and return this form to Greyline. It is important. We use this information to check our database for performance of Greyline flow meters in similar applications, and to provide advice and recommendations to you. Thank you for your cooperation.
	Contact	, , , , ,
Contact Information	Title/Dept	
	Company	
	Address	
	Address	
	Tel	
	Fax	
tio	Email	
	Mobile	
	Pipe Run	[] Vertical [] Horizontal
	Pipe Full	[]Yes []No
	Fluid Type	[]110
Service Conditions	% of Solids	
	Nominal Pipe Size and Schedule	
	Pipe Outside Diameter	
	Wall Thickness	
	Pipe Material	
	Liner Material	
	Liner Thickness	
dit	Normal Flow	
ion	Maximum Flow	
S	Minimum Flow	
	Maximum Temperature	
	Maximum Pressure	
	Vibration	[] Yes [] No
	Hazardous Rating	
	-	
Note	s / Additional Comments / Pipe Run	Diagram:

LIMITED WARRANTY

Greyline Instruments warrants, to the original purchaser, its products to be free from defects in material and workmanship for a period of one year from date of invoice. Greyline will replace or repair, free of charge, any Greyline product if it has been proven to be defective within the warranty period. This warranty does not cover any expenses incurred in the removal and re-installation of the product.

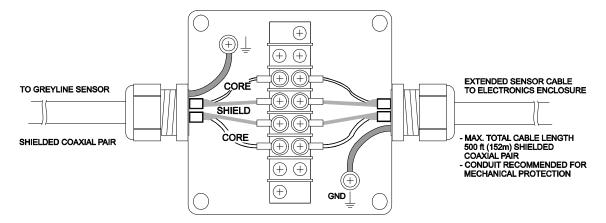
If a product manufactured by Greyline should prove defective within the first year, return it freight prepaid to Greyline Instruments along with a copy of your invoice.

This warranty does not cover damages due to improper installation or handling, acts of nature, or unauthorized service. Modifications to or tampering with any part shall void this warranty. This warranty does not cover any equipment used in connection with the product or consequential damages due to a defect in the product.

All implied warranties are limited to the duration of this warranty. This is the complete warranty by Greyline and no other warranty is valid against Greyline. Some states do not allow limitations on how long an implied warranty lasts or limitation of incidental or consequential damages, so the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Greyline Instruments Inc.



APPENDIX A - OPTIONS

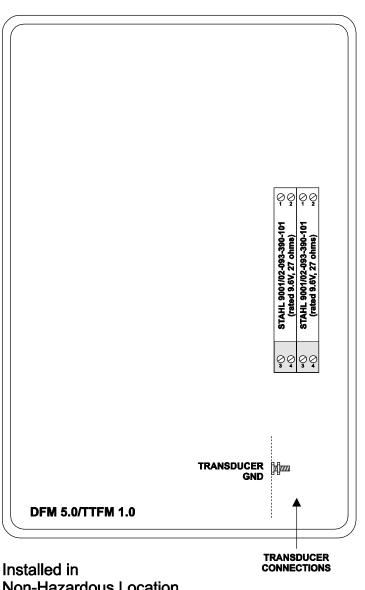
EXTRA SENSOR CABLE (OPTION DXC)

Each Greyline flow meter includes 25 ft / 7.6m (or 50 ft / 15 m optional) continuous shielded coaxial pair cable. Additional cable and Cable Junction Box (Option JB2X) may be ordered with the Flow Meter, or the cable may be spliced and extended up to 250 ft (75 m) as required during installation. No adjustment is required when the sensor cable is extended or shortened. Use only Greyline shielded coaxial pair (RG174U) cable.

Extended sensor cable should be installed in conduit for mechanical protection. Recommended installation with a NEMA4X junction box is illustrated below:

COAXIAL CABLE PREPARATION

DXC Transit Time sensor cable can be cut and spliced up to a maximum length of 250 ft (75 m). Cable ends must be prepared as illustrated below.

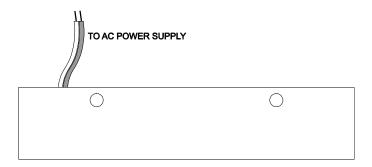


SENSOR INTRINSIC SAFETY

GN3SPEC-ISB-01

The intrinsic safety barrier assemblies installed in the DFM 5.0/TTFM 1.0 limit the voltage and current supplied to the transducers to the values listed under 'Barrier Specifications'. To safely install a Greyline transducer certified for use in hazardous locations you must refer to the installation drawings/specifications of the certified transducer.

Non-Hazardous Location

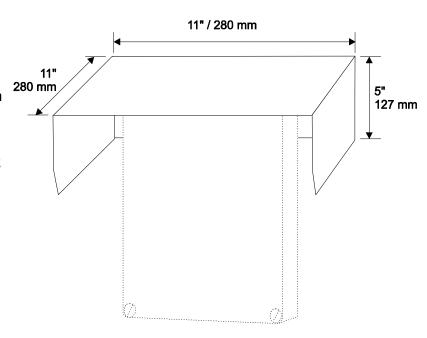

BARRIER SPECIFICATIONS

STAHL BARRIER	System Parameters	Entity Parameters					
0004/02 002 200 404	0.6\/ 27.ohma	Um V	V ₀ c	lsc 200m A	P ₀	Ca	L _a
9001/02-093-390-101	9.6V, 27 ohms	250V	9.3V	390mA	906.8mW	4.1µF	0.16mH

ENCLOSURE HEATER AND THERMOSTAT - Option TH

Instruments can be factory-equipped with an Enclosure Heater and Thermostat or the module can be customer-installed. The Thermostat is factory set to turn ON at 40°F (4.5°C) and OFF at 60°F (15.5°C). Power consumption is 15 Watts.

ENCLOSURE SUNSCREEN - Option SCR

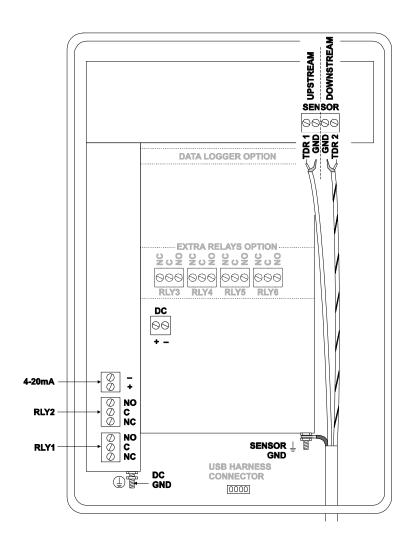

Do not mount instrument electronics in direct sunlight. Overheating will reduce the life of electronic components and condensate may form during the heat/cool cycles and cause electrical shorts.

Note:

Exposure to direct sunlight can cause overheating and moisture condensation which will reduce the operating life of electronics.

Protect Instruments from direct sunlight with this iridite finished aluminum sun screen (Greyline Option SCR).

Seal conduit entries with caulking compound to further reduce moisture condensation.



POWER INPUT OPTION 9-32VDC

TTFM 1.0 Flow Meters may be ordered factory-configured for 9-32VDC power input.

CONNECTIONS:

POWER INPUT: Connect 9-32VDC to the + and - terminals. The Power Input GND terminal must be connected to the nearest Ground pole. A 1 amp fuse in line is recommended.

Data Log	ging
▶Log Site 1	ID 00
	99
Mode	Flow
	Velocity
Set Date	Feb 18/2008
Set Time Interval	11:27:40 10sec
Inceroal	60min
	30min
	15min
	1 <u>0</u> min
	5min 2min
	1min
	30sec
Log	Stop
_	Start
	Delete
	50.000

DATA LOGGING (Optional)

Setup

Select Data Logging from Menu Selections.

Log Site ID Enter a number from 00 to 99. The site ID will become

part of the downloaded file name to help distinguish downloads from different instruments. Press ✓ to store the

setting.

Mode Select Velocity (e.g. ft/sec or m/sec). Flow (e.g. USGPM or

1/sec). Press ✓ to store the setting.

Set Date Press ★ or ▼ to scroll and select Month, Day and Year. Press

✓ to store the setting.

Set Time Press ★ or ▼ to select the current time in Hours, Minutes and

Seconds. Press ✓ to store the setting.

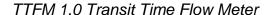
Interval Press ★ or ▼ to select the logging interval.

Press ✓ to store the setting.

Log Stop, Start or Delete the log file.

Press ♠ or ▶ to Delete and ✓ to delete the log file.

Press ightharpoonup or ightharpoonup to start the logger.

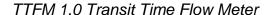

Note: You MUST delete old log and start a new log AFTER having set changes to Log Site ID, Mode and/or Interval for those changes to be applied to the log file.

RETRIEVE LOG FILE

Plug a USB Flash Memory Drive (not supplied by Greyline) into the USB output cable from the instrument. The instrument display will show the icon until the log file is transferred to the memory card. The USB flash drive may be removed.

Download file names will appear in this format:

Tag is set according to the Log Site ID entered in the instrument Data Logging menu.



Download letter will be A for the first download from an instrument. B for the second, then C etc. At the letter Z a - character will appear indicating that the maximum number of downloads for that instrument are on the USB flash drive. Older files can be erased or moved from the flash memory drive or a new memory drive can be used.

OPENING LOG FILES

Install Greyline Logger on your PC or laptop. Refer to the Help menu in the program for detailed instructions.

Select File/Open/Instrument Log (.log) to open the log file from your USB flash drive.

10.94"/278 mm

10"/254

-5.12"/130 mm

SIDE VIEW

7.4"/188 mm 6.46"/164 mm

GREYLINE

SPECIFICATIONS

±0.07 to 39 ft/sec (±0.02 Flow Rate Range:

to 12 m/sec) typical

2" to 48" (50 to 1200 Pipe Size:

mm)

Accuracy: ±1% of flow rate,

> Repeatability and Linearity: ±0.25%

White, backlit matrix -Displays:

> displays flow rate, totalizer, relay states, operating mode and

calibration menu

Calibration: built-in 5-key calibrator

with English, French or Spanish language

selection

Power Input: 100-240VAC, 50/60Hz, 30 Watts or

Optional 9-32VDC, rated 9W (typical **4.0W** with standard features)

CONDUIT ENTRY

LOCATION

Output: Isolated 4-20mA (1000 ohm load max.)

Control Relays: Qty 2, rated 5 amp 240Vac SPDT, programmable flow alarm and/or

proportional pulse

Enclosure: watertight, dust tight NEMA4X (IP 66) polycarbonate with a clear

shatter-proof face

Environmental Conditions: Relative humidity up to 80%, -23 to 60°C ambient temperature,

maximum 5000 m altitude, pollution degree 4, Installation Category II.

Electrical Surge Protection: Sensor, 4-20mA output and AC power input

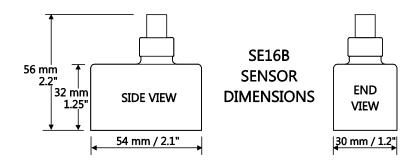
Approximate Shipping Weight: 12 lbs (5.5 kg)

SE16 Transit Time Sensor

Pipe Diameter: 2" to 48" (50 to 1200 mm)

Operating Temperature: -40° to 300°F (-40° to 150°C)

Operating Frequency: 1.28 MHz


> Sensor Cable: 25 ft (7.6 m) including TTJB Junction Box, BNC connectors and seal

> > iackets

Optional 50 ft (15 m) or 100 ft (30 m) including TTJB Junction Box, BNC

connectors and seal jackets

Submersion Rating: Withstands accidental submersion pressure up to 10 psi (0.7 Bar)

APPENDIX B - CONVERSION TABLE

	CONVERSION GUIDE										
FROM	ТО	MULTIPLY BY									
US GALLONS	CUBIC FEET	0.1337									
US GALLONS	IMPERIAL GALS	0.8327									
US GALLONS	LITRES	3.785									
US GALLONS	CUBIC METERS	0.003785									
LITRES/SEC	GPM	15.85									
LITRES	CUBIC METERS	0.001									
BARRELS	US GALLONS	42									
BARRELS	IMPERIAL GALS	34.9726									
BARRELS	LITRES	158.9886									
INCHES	MM	25.4									
DEGREES F	DEGREES C	(°F-32) x 0.556									
POUNDS	KILOGRAMS	0.453									
PSI	BAR	0.0676									
FOOT ²	METER ²	0.0929									

Note: BARRELS are U.S. oil barrels.

PIPE CHARTS

Carbon Steel & PVC Pipe

	on ste	CI CI	7011	 								1		1	
Pipe	Pipe	Stan Sched		Extra Sched		Dbl. I Hea		Sched	ule 10	Sched	ule 20	Sched	ule 30	Sched	ule 40
Size	O.D.	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL
1/2	.840	.622	.109	.546	.147	.252	.294							.622	.109
3/4	1.050	.824	.113	.742	.154	.434	.308							.824	.113
1	1.315	1.049	.133	.957	.179	.599	.358							1.049	.133
11/4	1.660	1.380	.140	1.278	.191	.896	.382							1.380	.140
11/2	1.900	1.610	.145	1.500	.200	1.100	.400							1.610	.145
2	2.375	2.067	.154	1.939	.218	1.503	.436							2.067	.154
21/2	2.875	2.469	.203	2.323	.276	1.771	.552							2.469	.203
3	3.500	3.068	.216	2.900	.300	2.300	.600							3.068	.216
31/2	4.000	3.548	.226	3.364	.318	2.728	.636							3.548	.226
4	4.500	4.026	.237	3.826	.337	3.152	.674							4.026	.237
5	5.563	5.047	.258	4.813	.375	4.063	.750							5.047	.258
6	6.625	6.065	.280	5.761	.432	4.897	.864							6.065	.280
8	8.625	7.981	.322	7.625	.500	6.875	.875			8.125	.250	8.071	.277	7.981	.322
10	10.750	10.020	.365	9.750	.500	8.750	1.000			10.250	.250	10.136	.307	10.020	.365
12	12.750	12.000	.375	11.750	.500	10.750	1.000			12.250	.250	12.090	.330	11.938	.406
14	14.000	13.250	.375	13.000	.500			13.500	.250	13.376	.312	13.250	.375	13.124	.438
16	16.000	15.250	.375	15.000	.500			15.500	.250	15.376	.312	15.250	.375	15.000	.500
18	18.000	17.250	.375	17.000	.500			17.500	.250	17.376	.312	17.124	.438	16.876	.562
20	20.000	19.250	.375	19.000	.500			19.500	.250	19.250	.375	19.000	.500	18.814	.593
22	22.000	21.250	.375	21.000	.500			21.500	.250	21.250	.375	21.000	.500		
24	24.000	23.250	.375	23.000	.500			23.500	.250	23.250	.375	22.876	.562	22.626	.687
26	26.000	25.250	.375	25.000	.500			25.376	.312	25.000	.500				
28	28.000	27.250	.375	27.000	.500			27.376	.312	27.000	.500	26.750	.625		
30	30.000	29.250	.375	29.000	.500			29.376	.312	29.000	.500	28.750	.625		
32	32.000	31.250	.375	31.000	.500			31.376	.312	31.000	.500	30.750	.625		
34	34.000	33.250	.375	33.000	.500			33.376	.312	33.000	.500	32.750	.625		
36	36.000	35.250	.375	35.000	.500			35.376	.312	35.000	.500	34.750	.625		
42	42.000	41.250	.375	41.000	.500					41.000	.500	40.750	.625		

Ductile Iron Pipe - Standard Classes

Size	OUTSIDE	Cla	ss	Clas	ss	Clas	ss	CEMENT	LINING								
INCH	DIA.	5	0	5	1	52	2	53	3	54	1	55	i	56	i	**S TD	** DOUBLE
	INCH	WALL	LD.	WALL	LD.	WALL	LD.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	THIC KNESS	THICKNESS
3	3.96			0.25	3.46	0.28	3.40	0.31	3.34	0.34	3.28	0.37	3.22	0.41	3.14		
4	4.80			0.26	428	0.29	422	0.32	4.16	0.35	4.10	0.38	4.04	0.44	3.93		
6	6.90	0.25	6.40	0.28	6.34	0.31	628	0.34	622	0.37	6.16	0.40	6.10	0.43	6.04	.125	.250
8	9.05	0.27	8.51	0.30	8.45	0.33	8.39	0.36	8.33	0.39	827	0.42	821	0.45	8.15		
10	11.10	0.39	10.32	0.32	10.46	0.35	10.40	0.38	10.34	0.41	10.28	0.44	10.22	0.47	10.16		
12	13.20	0.31	12.58	0.34	12.52	0.37	12.46	0.40	12.40	0.43	12.34	0.46	12.28	0.49	12.22		
14	15.30	0.33	14.64	0.36	14.58	0.39	14.52	0.42	14.46	0.45	14.40	0.48	14.34	0.51	14.28		
16	17.40	0.34	16.72	0.37	16.66	0.40	16.60	0.43	16.54	0.46	16.48	0.49	16.42	0.52	16.36		
18	19.50	0.35	18.80	0.38	18.74	0.41	18.68	0.44	18.62	0.47	18.56	0.50	18.50	0.53	18.44	.1875	.375
20	21.60	0.36	20.88	0.39	20.82	0.42	20.76	0.45	20.70	0.48	20.64	0.51	20.58	0.54	20.52		
24	25.80	0.38	25.04	0.41	24.98	0.44	24.92	0.47	24.86	0.50	24.80	0.53	24.74	0.56	24.68		
30	32.00	0.39	31.22	0.43	31.14	0.47	31.06	0.51	30.98	0.55	30.90	0.59	30.82	0.63	30.74		
36	38.30	0.43	37.44	0.48	37.34	0.62	37.06	0.58	37.14	0.63	37.04	0.68	36.94	0.73	36.84		
42	44.50	0.47	43.56	0.53	43.44	0.59	43.32	0.65	43.20	0.71	43.08	0.77	42.96	0.83	42.84	.250	.500
48	50.80	0.51	49.78	0.58	49.64	0.65	49.50	0.72	49.36	0.79	49.22	0.86	49.08	0.93	48.94		
54	57.10	0.57	55.96	0.65	55.80	0.73	55.64	0.81	55.48	0.89	55.32	0.97	55.16	1.05	55.00		

^{**}REDUCE I.D. BY DIMENSION SHOWN

Stainless Steel, Hastelloy "C" & Titanium Pipe

Pipe	Pipe	Scl	heule 5 S (a)	Sche	edule 10 S (a)	Sche	edule 40 S	Sche	dule 80 S
Size	O.D.	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL
1/2	.840	.710	.065	.674	.083	.622	.109	.546	.147
3/4	1.050	.920	.065	.884	.083	.824	.113	.742	.154
1	1.315	1.185	.065	1.097	.109	1.049	.133	.957	.179
11/4	1.660	1.530	.065	1.442	.109	1.380	.140	1.278	.191
11/2	1.900	1.770	.065	1.682	.109	1.610	.145	1.500	.200
2	2.375	2.245	.065	2.157	.109	2.067	.154	1.939	.218
2½	2.875	2.709	.083	2.635	.120	2.469	.203	2.323	.276
3	3.500	3.334	.083	3.260	.120	3.068	.216	2.900	.300
3½	4.000	3.834	.083	3.760	.120	3.548	.226	3.364	.318
4	4.500	4.334	.083	4.260	.120	4.026	.237	3.826	.337
5	5.563	5.345	.109	5.295	.134	5.047	.258	4.813	.375
6	6.625	6.407	.109	6.357	.134	6.065	.280	5.761	.432
8	8.625	8.407	.109	8.329	.148	7.981	.322	7.625	.500
10	10.750	10.482	.134	10.420	.165	10.020	.365	9.750	.500
12	12.750	12.438	.156	12.390	.180	12.000	.375	11.750	.500
14	14.000	13.688	.156	13.624	.188				
16	16.000	15.670	.165	15.624	.188				
18	18.000	17.670	.165	17.624	.188				
20	20.000	19.634	.188	19.564	.218				
22	22.000	21.624	.188	21.564	.218				
24	24.000	23.563	.218	23.500	.250				

Pipe	Pipe	Sched	ule 60	Sched	ule 80	Schedu	ule 100	Schedu	ule 120	Sched	ule 140	Sched	ule 160
Size	O.D.	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL
1/2	.840			.546	.147							.466	.187
3/4	1.050			.742	.154							.614	.218
1	1.315			.957	.179							.815	.250
11/4	1.660			1.278	.191							1.160	.250
1½	1.900			1.500	.200							1.338	.281
2	2.375			1.939	.218							1.689	.343
2½	2.875			2.323	.276							2.125	.375
3	3.500			2.900	.300							2.624	.438
3½	4.000			3.364	.318								
4	4.500			3.826	.337			3.624	.438			3.438	.531
5	5.563			4.813	.375			4.563	.500			4.313	.625
6	6.625			5.761	.432			5.501	.562			5.189	.718
8	8.625	7.813	.406	7.625	.500	7.439	.593	7.189	.718	7.001	.812	6.813	.906
10	10.750	9.750	.500	9.564	.593	9.314	.718	9.064	.843	8.750	1.000	8.500	1.125
12	12.750	11.626	.562	11.376	.687	11.064	.843	10.750	1.000	10.500	1.125	10.126	1.312
14	14.000	12.814	.593	12.500	.750	12.126	.937	11.814	1.093	11.500	1.250	11.188	1.406
16	16.000	14.688	.656	14.314	.843	13.938	1.031	13.564	1.218	13.124	1.438	12.814	1.593
18	18.000	16.500	.750	16.126	.937	15.688	1.156	15.250	1.375	14.876	1.562	14.438	1.781
20	20.000	18.376	.812	17.938	1.031	17.438	1.281	17.000	1.500	16.500	1.750	16.064	1.968
22	22.000	20.250	.875	19.750	1.125	19.250	1.375	18.750	1.625	18.250	1.875	17.750	2.125
24	24.000	22.064	.968	21.564	1.218	20.938	1.531	20.376	1.812	19.876	2.062	19.314	2.343

Cast Iron Pipe - ASA Standard

Pipe	Pipe	Class	s 50	Class	100	Class	150	Clas	s 200	Class	250	Class	s 300	Class	s 350
Size	O.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.	WALL	I.D.
3	3.96	0.32	3.32	0.32	3.32	0.32	3.32	0.32	3.32	0.32	3.32	0.32	3.32	0.32	3.32
4	4.80	0.35	4.10	0.35	4.10	0.35	4.10	0.35	4.10	0.35	4.10	0.35	4.10	0.35	4.10
6	6.90	0.38	6.14	0.38	6.14	0.38	6.14	0.38	6.14	0.38	6.14	0.38	6.14	0.38	6.14
8	9.05	0.41	8.23	0.41	8.23	0.41	8.23	0.41	8.23	0.41	8.23	0.41	8.23	0.41	8.23
10	11.10	0.44	10.22	0.44	10.22	0.44	10.22	0.44	10.22	0.44	10.22	0.48	10.14	0.52	10.06
12	13.20	0.48	12.24	0.48	12.24	0.48	12.24	0.48	12.24	0.52	12.16	0.52	12.16	0.56	12.08
14	15.30	0.48	14.34	0.51	14.28	0.51	14.28	0.55	14.20	0.59	14.12	0.59	14.12	0.64	14.02
16	17.40	0.54	16.32	0.54	16.32	0.54	16.32	0.58	16.24	0.63	16.14	0.68	16.04	0.68	16.04
18	19.50	0.54	18.42	0.58	18.34	0.58	18.34	0.63	18.24	0.68	18.14	0.73	18.04	0.79	17.92
20	21.60	0.57	20.46	0.62	20.36	0.62	20.36	0.67	20.26	0.72	20.16	0.78	20.04	0.84	19.92
24	25.80	0.63	24.54	0.68	24.44	0.73	24.34	0.79	24.22	0.79	24.22	0.85	24.10	0.92	23.96

Cast Iron Pipe - AWWA Standard

		Clas	ss A		Class B			Class	s C		Clas	s D
Pipe		100 Ft. 4	43 PSIG	20	0 Ft. 86 PS	IG		300 Ft. 13	0 PSIG		400 Ft. 1	73 PSIG
Size	O.D.	WALL	I.D.	O.D.	WALL	I.D.	O.D.	WALL	I.D.	O.D.	WALL	I.D.
3	3.80	0.39	3.02	3.96	0.42	3.12	3.96	0.45	3.06	3.96	0.48	3.00
4	4.80	0.42	3.96	5.00	0.45	4.10	5.00	0.48	4.04	5.00	0.52	3.96
6	6.90	0.44	6.02	7.10	0.48	6.14	7.10	0.51	6.08	7.10	0.55	6.00
8	9.05	0.46	8.13	9.05	0.51	8.03	9.30	0.56	8.18	9.30	0.60	8.10
10	11.10	0.50	10.10	11.10	0.57	9.96	11.40	0.62	10.16	11.40	0.68	10.04
12	13.20	0.54	12.12	13.20	0.62	11.96	13.50	0.68	12.14	13.50	0.75	12.00
14	15.30	0.57	14.16	15.30	0.66	13.98	15.65	0.74	14.17	15.65	0.82	14.01
16	17.40	0.60	16.20	17.40	0.70	16.00	17.80	0.80	16.20	17.80	0.89	16.02
18	19.50	0.64	18.22	19.50	0.75	18.00	19.92	0.87	18.18	19.92	0.96	18.00
20	21.60	0.67	20.26	21.60	0.80	20.00	22.06	0.92	20.22	22.06	1.03	20.00
24	25.80	0.76	24.28	25.80	0.89	24.02	26.32	1.04	24.22	26.32	1.16	24.00
30	31.74	0.88	29.98	32.00	1.03	29.94	32.40	1.20	30.00	32.74	1.37	30.00
36	37.96	0.99	35.98	38.30	1.15	36.00	38.70	1.36	39.98	39.16	1.58	36.00
42	44.20	1.10	42.00	44.50	1.28	41.94	45.10	1.54	42.02	45.58	1.78	42.02
48	50.50	1.26	47.98	50.80	1.42	47.96	51.40	1.71	47.98	51.98	1.96	48.06
54	56.66	1.35	53.96	57.10	1.55	54.00	57.80	1.90	54.00	58.40	2.23	53.94
60	62.80	1.39	60.02	63.40	1.67	60.06	64.20	2.00	60.20	64.82	2.38	60.06
72	75.34	1.62	72.10	76.00	1.95	72.10	76.88	2.39	72.10			
84	87.54	1.72	84.10	88.54	2.22	84.10						

		Clas	ss E		Class F			Class	s G		Clas	s H
Pipe		500 Ft. 2	17 PSIG	600 Ft. 260 PSIG			700 Ft. 304 PSIG				800 Ft. 3	47 PSIG
Size	O.D.	WALL	I.D.	O.D.	WALL	I.D.	O.D.	WALL	I.D.	O.D.	WALL	I.D.
6	7.22	0.58	6.06	7.22	0.61	6.00	7.38	0.65	6.08	7.38	0.69	6.00
8	9.42	0.66	8.10	9.42	0.71	8.00	9.60	0.75	8.10	9.60	0.80	8.00
10	11.60	0.74	10.12	11.60	0.80	10.00	11.84	0.86	10.12	11.84	0.92	10.00
12	13.78	0.82	12.14	13.78	0.89	12.00	14.08	0.97	12.14	14.08	1.04	12.00
14	15.98	0.90	14.18	15.98	0.99	14.00	16.32	1.07	14.18	16.32	1.16	14.00
16	18.16	0.98	16.20	18.16	1.08	16.00	18.54	1.18	16.18	18.54	1.27	16.00
18	20.34	1.07	18.20	20.34	1.17	18.00	20.78	1.28	18.22	20.78	1.39	18.00
20	22.54	1.15	20.24	22.54	1.27	20.00	23.02	1.39	20.24	23.02	1.51	20.00
24	26.90	1.31	24.28	26.90	1.45	24.00	27.76	1.75	24.26	27.76	1.88	24.00
30	33.10	1.55	30.00	33.46	1.73	30.00						
36	39.60	1.80	36.00	40.04	2.02	36.00						

Copper Tubing

	P	···· 9													
Pipe		K			L			М		Coppe	r & Brass	s Pipe	Α	luminun	n
Size	O.D.	I.D.	WALL	O.D.	I.D.	WALL	O.D.	I.D.	WALL	O.D.	I.D.	WALL	O.D.	I.D.	WALL
1/2"	0.625	0.527	0.049	0.625	0.545	0.040	0.625	0.569	0.028	0.840	0.625	0.108			
5/8"	0.750	0.652	0.049	0.750	0.666	0.042	0.750	0.690	0.030						
3/4"	0.875	0.745	0.065	0.875	0.785	0.045	0.875	0.811	0.032	1.050	0.822	0.114			
1"	1.125	0.995	0.065	1.125	1.025	0.050	1.125	1.055	0.035	1.315	1.062	0.127			
1 1/4"	1.375	1.245	0.065	1.375	1.265	0.055	1.375	1.291	0.042	1.660	1.368	0.146			
1 ½"	1.625	1.481	0.072	1.625	1.505	0.060	1.625	1.527	0.049	1.900	1.600	0.150			
2"	2.125	1.959	0.083	2.125	1.985	0.070	2.125	2.009	0.058	2.375	2.062	0.157			
2 ½	2.625	2.435	0.095	2.625	2.465	0.080	2.625	2.495	0.065	2.875	2.500	0.188	2.500	2.400	0.050
3"	3.125	2.907	0.109	3.125	2.945	0.090	3.125	2.981	0.072	3.500	3.062	0.219	3.000	2.900	0.050
3 ½"	3.625	3.385	0.120	3.625	3.425	0.100	3.625	3.459	0.083	4.000	3.500	0.250			
4"	4.125	3.857	0.134	4.125	3.905	0.110	4.125	3.935	0.095	4.500	3.935	0.095	4.000	4.000	0.250
4 ½"													5.000	4.500	0.250
5"	5.125	4.805	0.160	5.125	4.875	0.125	5.125	4.907	0.109	5.563	5.063	0.250	5.000	4.874	0.063
6"	6.125	5.741	0.192	6.125	5.845	0.140	6.125	5.881	0.122	6.625	6.125	0.250	6.000	5.874	0.063
7"										7.625	7.062	0.282	7.000	6.844	0.078
8"	8.125	7.583	0.271	8.125	7.725	0.200	8.125	7.785	0.170	8.625	8.000	0.313	8.000	7.812	0.094
10"	10.125	9.449	0.338	10.125	9.625	0.250	10.125	9.701	0.212	10.000	9.812	0.094			
12"	12.125	11.315	0.405	12.125	11.565	0.280	12.125	11.617	0.254	1					

APPENDIX C - Liquid Speed of Sound

Substance	Form Index	Specific Gravity	Sound Speed	v/°C - m/s/°C Δ
		,	m/sec.	
Acetic anhydride (22)	(CH3CO)2O	1.082 (20°C)	1180	2.5
Acetic acid, anhydride (22)	(CH ₃ CO) ₂ O	1.082 (20°C)	1180	2.5
Acetic acid, nitrile	C ₂ H ₃ N	0.783	1290	4.1
Acetic acid, ethyl ester (33)	C4H8O2	0.901	1085	4.4
Acetic acid, methyl ester	C3H6O2	0.934	1211	
Acetone	СзН6О	0.791	1174	4.5
Acetonitrile	C ₂ H ₃ N	0.783	1290	4.1
Acetonylacetone	C6H10O2	0.729	1399	3.6
Acetylene dichloride	C2H2C12	1.26	1015	3.8
Acetylene tetrabromide (47)	C2H2Br4	2.966	1027	
Acetylene tetrachloride (47)	C2H2Cl4	1.595	1147	
Alcohol	C2H6O	0.789	1207	4.0
Alkazene-13	C15H24	0.86	1317	3.9
Alkazene-25	C10H12Cl2	1.20	1307	3.4
2-Amino-ethanol	C ₂ H ₇ NO	1.018	1724	3.4
2-Aminotolidine (46)	C7H9N	0.999 (20°C)	1618	
4-Aminotolidine (46)	C7H9N	0.966 (45°C)	1480	
Ammonia (35)	NH3	0.771	1729	6.68
Amorphous Polyolefin		0.98	962.6	
t-Amyl alcohol	C5H12O	0.81	1204	
Aminobenzene (41)	C6H5NO2	1.022	1639	4.0
Aniline (41)	C6H5NO2	1.022	1639	4.0
Argon (45)	Ar	1.400 (-188°C)	853	
Azine	C ₆ H ₅ N	0.982	1415	4.1
Benzene (29,40,41)	C6H6	0.879	1306	4.65
Benzol(29,40,41)	C6H6	0.879	1306	4.65
Bromine (21)	Br2	2.928	889	3.0
Bromo-benzene (46)	C ₆ H ₅ Br	1.522	1170	
1-Bromo-butane (46)	C4H9Br	1.276 (20°C)	1019	
Bromo-ethane (46)	C ₂ H ₅ Br	1.460 (20°C)	900	
Bromoform (46,47)	CHBr ₃	2.89 (20°C)	918	3.1
n-Butane (2)	C4H10	0.601 (0°C)	1085	5.8
2-Butanol	C4H10O	0.81	1240	3.3
sec-Butylalcohol	C4H10O	0.81	1240	3.3
n-Butyl bromide (46)	C4H9Br	1.276 (20°C)	1019	
n-Butyl chloride (22,46)	C4H9Cl	0.887	1140	4.57
tert Butyl chloride	C4H9Cl	0.84	984	4.2
Butyl oleate	C22H42O2		1404	3.0
2,3 Butylene glycol	C4H10O2	1.019	1484	1.51
Cadmium (7)	Cd		2237.7	
Carbinol (40,41)	CH4O	0.791 (20°C)	1076	2.92
Carbitol	C6H14O3	0.988	1458	
Carbon dioxide (26)	CO ₂	1.101 (-37°C)	839	7.71
Carbon disulphide	CS ₂	1.261 (22°C)	1149	
Carbon tetrachloride(33,35,47)	CCl4	1.595 (20°C)	926	2.48

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
Carbon tetrafluoride (14)	CF4	1.75 (-150°C)	875.2	6.61
Cetane (23)	C16H34	0.773 (20°C)	1338	3.71
Chloro-benezene	C ₆ H ₅ Cl	1.106	1273	3.6
1-Chloro-butane (22,46)	C4H9Cl	0.887	1140	4.57
Chloro-diFluoromethane (3) (Freon 22)	CHCIF2	1.491 (-69°C)	893.9	4.79
Chloroform (47)	CHCl3	1.489	979	3.4
1-Chloro-propane (47)	C3H7CI	0.892	1058	
Chlorotrifluoromethane (5)	CCIF3		724	5.26
Cinnamaldehyde	C9H8O	1.112	1554	3.2
Cinnamic aldehyde	C ₉ H ₈ O	1.112	1554	3.2
Colamine	C ₂ H ₇ NO	1.018	1724	3.4
o-Cresol (46)	C7H8O	1.047 (20°C)	1541	
m-Cresol (46)	C7H8O	1.034 (20°C)	1500	
Cyanomethane	C2H3N	0.783	1290	4.1
Cyclohexane (15)	C6H12	0.779 (20°C)	1248	5.41
Cyclohexanol	C6H12O	0.962	1454	3.6
Cyclohexanone	C6H10O	0.948	1423	4.0
Decane (46)	C10H22	0.730	1252	
1-Decene (27)	C10H20	0.746	1235	4.0
n-Decylene (27)	C10 H20	0.746	1235	4.0
Diacetyl	C4H6O2	0.99	1236	4.6
Diamylamine	C10H23N		1256	3.9
1,2 Dibromo-ethane (47)	C2H4Br2	2.18	995	
trans-1,2-Dibromoethene(47)	C2H2Br2	2.231	935	
Dibutyl phthalate	C8H22O4		1408	
Dichloro-t-butyl alcohol	C4H8Cl2O		1304	3.8
2,3 Dichlorodioxane	C2H6Cl2O2		1391	3.7
Dichlorodifluoromethane (3) (Freon 12)	CCl ₂ F ₂	1.516 (-40°C)	774.1	4.24
1,2 Dichloro ethane (47)	C2H4Cl2	1.253	1193	
cis 1,2-Dichloro-Ethene(3,47)	C2H2Cl2	1.284	1061	
trans 1,2-Dichloro-ethene(3,47)	C2H2Cl2	1.257	1010	
Dichloro-fluoromethane (3) (Freon 21)	CHCl ₂ F	1.426 (0°C)	891	3.97
1-2-Dichlorohexafluoro cyclobutane (47)	C4Cl2F6	1.654	669	
1-3-Dichloro-isobutane	C4H8Cl2	1.14	1220	3.4
Dichloro methane (3)	CH2Cl2	1.327	1070	3.94
1,1-Dichloro-1,2,2,2 tetra fluoroethane	CCIF2-CCIF2	1.455	665.3	3.73
Diethyl ether	C4H10O	0.713	985	4.87
Diethylene glycol, monoethyl ether	C6H14O3	0.988	1458	
Diethylenimide oxide	C4H9NO	1.00	1442	3.8
1,2-bis(DiFluoramino) butane (43)	C4H8(NF2)2	1.216	1000	
1,2bis(DiFluoramino)- 2-methylpropane (43)	C4H9(NF2)2	1.213	900	
1,2bis(DiFluoramino) propane (43)	C3H6(NF2)2	1.265	960	
2,2bis(DiFluoramino) propane (43)	C3H6(NF2)2	1.254	890	
2,2-Dihydroxydiethyl ether	C4H10O3	1.116	1586	2.4

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
Dihydroxyethane	C2H6O2	1.113	1658	2.1
1,3-Dimethyl-benzene (46)	C8H10	0.868 (15°C)	1343	
1,2-1.0Dimethyl-benzene(29,46)	C8H10	0.897 (20°C)	1331.5	4.1
1,4-Dimethyl-benzene (46)	C8H10		1334	
2,2-Dimethyl-butane (29,33)	C6H14	0.649 (20°C)	1079	
Dimethyl ketone	C3H6O	0.791	1174	4.5
Dimethyl pentane (47)	C7H16	0.674	1063	-
Dimethyl phthalate	C8H10O4	1.2	1463	
Diiodo-methane	CH2I2	3.235	980	
Dioxane	C4H8O2	1.033	1376	
Dodecane (23)	C12H26	0.749	1279	3.85
1,2-Ethanediol	C2H6O2	1.113	1658	2.1
Ethanenitrile	C ₂ H ₃ N	0.783	1290	
Ethanoic anhydride (22)	(CH ₃ CO) ₂ O	1.082	1180	
Ethanol	C ₂ H ₆ O	0.789	1207	4.0
Ethanol amide	C2H7NO	1.018	1724	3.4
Ethoxyethane	C4H10O	0.713	985	4.87
Ethyl acetate (33)	C4H8O2	0.901	1085	4.4
Ethyl alcohol	C2H6O	0.789	1207	4.0
Ethyl benzene (46)	C8H10	0.867(20°C)	1338	0
Ethyl bromide (46)	C ₂ H ₅ Br	1.461 (20°C)	900	
Ethyliodide (46)	C ₂ H ₅ I	1.950 (20°C)	876	
Ether	C4H10O	0.713	985	4.87
Ethyl ether	C4H10O	0.713	985	4.87
Ethylene bromide (47)	C2H4Br2	2.18	995	
Ethylene chloride (47)	C2H4Cl2	1.253	1193	
Ethylene glycol	C2H6O2	1.113	1658	2.1
50% Glycol/ 50% H ₂ O	021.1802		1578	
d-Fenochone	C10H16O	0.947	1320	
d-2-Fenechanone	C10H16O	0.947	1320	
Fluorine	F	0.545 (-143°C)	403	11.31
Fluoro-benzene (46)	C ₆ H ₅ F	1.024 (20°C)	1189	
Formaldehyde, methyl ester	C2H4O2	0.974	1127	4.02
Formamide	CH ₃ NO	1.134 (20°C)	1622	2.2
Formic acid, amide	СНзNО	1.134 (20°C)	1622	
Freon R12			774	
Furfural	C5H4O2	1.157	1444	
Furfuryl alcohol	C5H6O2	1.135	1450	3.4
Fural	C5H4O2	1.157	1444	3.7
2-Furaldehyde	C5H4O2	1.157		
2-Furancarboxaldehyde	C5H4O2	1.157	1444	3.7
2-Furyl-Methanol	C5H6O2	1.135	1450	3.4
Gallium	Ga	6.095	2870 (@30°C)	
Glycerin	СзНвОз	1.26	1904	2.2

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
Glycerol	C3H8O3	1.26	1904	2.2
Glycol	C2H6O2	1.113	1658	2.1
Helium (45)	He ₄	0.125(-268.8°C)	183	
Heptane (22,23)	C7H16	0.684 (20°C)	1131	4.25
n-Heptane (29,33)	C7H16	0.684 (20°C)	1180	4.0
Hexachloro-Cyclopentadiene(47)	C5Cl6	1.7180	1150	
Hexadecane (23)	C16H34	0.773 (20°C)	1338	3.71
Hexalin	C6H12O	0.962	1454	3.6
Hexane (16,22,23)	C6H14	0.659	1112	2.71
n-Hexane (29,33)	C6H14	0.649 (20°C)	1079	4.53
2,5-Hexanedione	C6H10O2	0.729	1399	3.6
n-Hexanol	C6H14O	0.819	1300	3.8
Hexahydrobenzene (15)	C6H12	0.779	1248	5.41
Hexahydrophenol	C6H12O	0.962	1454	3.6
Hexamethylene (15)	C6H12	0.779	1248	5.41
Hydrogen (45)	H ₂	0.071 (-256°C)	1187	
2-Hydroxy-toluene (46)	C7H8O	1.047 (20°C)	1541	
3-Hydroxy-tolune (46)	C7H8O	1.034 (20°C)	1500	
lodo-benzene (46)	C6H5I	1.823	1114	
lodo-ethane (46)	C2H5I	1.950 (20°C)	876	
lodo-methane	CH ₃ I	2.28 (20°C)	978	
Isobutyl acetate (22)	C6H12O		1180	4.85
Isobutanol	C4H10O	0.81 (20°C)	1212	
Iso-Butane			1219.8	
Isopentane (36)	C5H12	0.62 (20°C)	980	4.8
Isopropanol (46)	СзНвО	0.785 (20°C)	1170	
Isopropyl alcohol (46)	СзНвО	0.785 (20°C)	1170	
Kerosene		0.81	1324	3.6
Ketohexamethylene	C6H10O	0.948	1423	4.0
Lithium fluoride (42)	LiF		2485	1.29
Mercury (45)	Hg	13.594	1449	
Mesityloxide	C6H16O	0.85	1310	
Methane (25,28,38,39)	CH4	0.162	405(-89.15°C)	17.5
Methanol (40,41)	CH4O	0.791 (20°C)	1076	2.92
Methyl acetate	C3H6O2	0.934	1211	
o-Methylaniline (46)	C7H9N	0.999 (20°C)	1618	
4-Methylaniline (46)	C7H9N	0.966 (45°C)	1480	
Methyl alcohol (40,44)	CH4O	0.791 (20°C)	1076	2.92
Methyl benzene (16,52)	C7H8	0.867	1328	4.27
2-Methyl-butane (36)	` '		980	
Methyl carbinol	C ₂ H ₆ O	0.62 (20°C) 0.789	1207	4.0
Methyl-chloroform (47)	C ₂ H ₃ Cl ₃	1.33	985	
Methyl-cyanide	C ₂ H ₃ N	0.783	1290	1
3-Methyl cyclohexanol	C7H14O	0.92	1400	

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
Methylene chloride (3)	CH2Cl2	1.327	1070	3.94
Methylene iodide	CH ₂ l ₂	3.235	980	
Methyl formate (22)	C2H4O2	0.974 (20°C)	1127	4.02
Methyl iodide	CH ₃ I	2.28 (20°C)	978	
2-Methylphenol (46)	C7H8O	1.047 (20°C)	1541	
3-Methylphenol (46)	C7H8O	1.034 (20°C)	1500	
Milk, homogenized			1548	
Morpholine	C4H9NO	1.00	1442	3.8
Naphtha		0.76	1225	
Natural Gas (37)		0.316 (-103°C)	753	
Neon (45)	Ne	1.207 (-246°C)	595	
Nitrobenzene (46)	C6H5NO2	1.204 (20°C)	1415	
Nitrogen (45)	N ₂	0.808 (-199°C)	962	
Nitromethane (43)	CH3NO2	1.135	1300	4.0
Nonane (23)	C9H2O	0.718 (20°C)	1207	4.04
1-Nonene (27)	C9H18	0.736 (20°C)	1207	4.0
Octane (23)	C8H18	0.703	1172	4.14
n-Octane (29)	C8H18	0.704 (20°C)	1212.5	3.50
1-Octene (27)	C8H16	0.723 (20°C)	1175.5	4.10
Oil of Camphor Sassafrassy			1390	3.8
Oil, Car (SAE 20a.30)	1.74		870	
Oil, Castor	C11H10O10	0.969	1477	3.6
Oil, Diesel		0.80	1250	
Oil, Fuel AA gravity		0.99	1485	3.7
Oil (Lubricating X200)			1530	5019.9
Oil (Olive)		0.912	1431	2.75
Oil (Peanut)		0.936	1458	
Oil (Sperm)		0.88	1440	
Oil, 6			1509	
2,2-Oxydiethanol	C4H10O3	1.116	1586	2.4
Oxygen (45)	O ₂	1.155 (-186°C)	952	
Pentachloro-ethane (47)	C2HCl5	1.687	1082	
Pentalin (47)	C2HCl5	1.687	1082	
Pentane (36)	C5H12	0.626 (20°C)	1020	
n-Pentane (47)	C5H12	0.557	1006	
Perchlorocyclopentadiene(47)	C ₅ Cl ₆	1.718	1150	
Perchloro-ethylene (47)	C2Cl4	1.632	1036	
Perfluoro-1-Hepten (47)	C7F14	1.67	583	
Perfluoro-n-Hexane (47)	C6F14	1.672	508	
Phene (29,40,41)	C6H6	0.879	1306	4.65
ß-Phenyl acrolein	C ₉ H ₈ O	1.112	1554	3.2
Phenylamine (41)	C6H5NO2	1.022	1639	4.0
Phenyl bromide (46)	C ₆ H ₅ Br	1.522	1170	

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
Phenyl chloride	C ₆ H ₅ CI	1.106	1273	3.6
Phenyl iodide (46)	C ₆ H ₅ I	1.823	1114	
Phenyl methane (16,52)	C7H8	0.867 (20°C)	1328	4.27
3-Phenyl propenal	C9H8O	1.112	1554	3.2
Phthalardione	C8H4O3		1125	
Phthalic acid, anhydride	C8H4O3		1125	
Phthalic anhydride	C8H4O3		1125	
Pimelic ketone	C6H10O	0.948	1423	4.0
Plexiglas, Lucite, Acrylic			2651	
Polyterpene Resin		0.77	1099.8	
Potassium bromide (42)	Kbr		1169	0.71
Potassium fluoride (42)	KF		1792	1.03
Potassium iodide (42)	KI		985	0.64
Potassium nitrate (48)	KNO ₃	1.859 (352°C)	1740.1	1.1
Propane (2,13)(-45 to -130°C)	C ₃ H ₈	0.585 (-45°C)	1003	5.7
1,2,3-Propanetriol	C3H8O3	1.26	1904	2.2
1-Propanol (46)	СзНвО	0.78 (20°C)	1222	
2-Propanol (46)	СзНвО	0.785 (20°C)	1170	
2-Propanone	СзН6О	0.791	1174	4.5
Propene (17,18,35)	C ₃ H ₆	0.563 (-13°C)	963	6.32
n-Propyl acetate (22)	C5H10O2	1280 (2°C)	4.63	
n-Propyl alcohol	СзНвО	0.78 (20°C)	1222	
Propylchloride (47)	C ₃ H ₇ Cl	0.892	1058	
Propylene (17,18,35)	СзН6	0.563 (-13°C)	963	6.32
Pyridine	C ₆ H ₅ N	0.982	1415	4.1
Refrigerant 11 (3,4)	ССІзF	1.49	828.3	3.56
Refrigerant 12 (3)	CCl ₂ F ₂	1.516 (-40°C)	774.1	4.24
Refrigerant 14 (14)	CF4	1.75 (-150°C)	875.24	6.61
Refrigerant 21 (3)	CHCl ₂ F	1.426 (0°C)	891	3.97
Refrigerant 22 (3)	CHCIF2	1.491 (-69°C)	893.9	4.79
Refrigerant 113 (3)	CCl ₂ F-CClF ₂	1.563	783.7	3.44
Refrigerant 114 (3)	CCIF2-CCIF2	1.455	665.3	3.73
Refrigerant 115 (3)	C2CIF5		656.4	4.42
Refrigerant C318 (3)	C4F8	1.62 (-20°C)	574	3.88
Selenium (8)	Se		1072	0.68
Silicone (30 cp)		0.993	990	
Sodium fluoride (42)	NaF	0.877	2082	1.32
Sodium nitrate (48)	NaNO ₃	1.884 (336°C)	1763.3	0.74
Sodium nitrite (48)	NaNO ₂	1.805 (292°C)	1876.8	
Solvesso 3		0.877	1370	3.7
Spirit of wine	C2H6O	0.789	1207	4.0
Sulphur (7,8,10)	S		1177	-1.13
Sulphuric acid (1)	H ₂ SO ₄	1.841	1257.6	1.43
Tellurium (7)	Te		991	0.73

Substance	Form Index	Specific Gravity	Sound Speed m/sec.	v/°C - m/s/°C Δ
1,1,2,2-Tetrabromo-ethane(47)	C ₂ H ₂ Br ₄	2.966120	1027	
1,1,2,2-Tetrachloro-ethane(67)	C2H2Cl4	1.595	1147	
Tetrachloroethane (46)	C2H2Cl4	1.553 (20°C)	1170	
Tetrachloro-ethene (47)	C2Cl4	1.632	1036	
Tetrachloro-methane (33,47)	CCI4	1.595 (20°C)	926	
Tetradecane (46)	C14H3O	0.763 (20°C)	1331	
Tetraethylene glycol	C8H18O5	1.123	1586/5203.4	3.0
Tetrafluoro-methane (14) (Freon 14)	CF4	1.75 (-150°C)	875.24	6.61
Tetrahydro-1,4-isoxazine	C4H9NO	1 (11 1)	1442	3.8
Toluene (16,52)	C7H8	0.867 (20°C)	1328	4.27
o-Toluidine (46)	C7H9N	0.999 (20°C)	1618	1
p-Toluidine (46)	C7H9N	0.966 (45°C)	1480	
Toluol	C7H8	0.866	1308	4.2
Tribromo-methane (46,47)	CHBr3	2.89 (20°C)	918	7.2
1,1,1-Trichloro-ethane (47)	C2H3Cl3	1.33	985	
Trichloro-ethene (47)	C2HCl3	1.464	1028	
` '		_		0.50
Trichloro-fluoromethane (3) (Freon 11) Trichloro-methane (47)	CCl ₃ F	1.49	828.3 979	3.56 3.4
1,1,2-Trichloro-1,2,2-Trifluoro-Ethane	CHCl3 CCl2F-CClF2	1.489 1.563	783.7	3.4
				1.17
Triethyl-amine (33)	C6H15N	0.726	1123	4.47
Triethylene glycol 1,1,1-Trifluoro-2-Chloro-2-Bromo-Ethane	C6H14O4	1.123	1608	3.8
	C2HClBrF3	1.869	693	
1,2,2-Trifluorotrichloro- ethane (Freon 113)	CCl ₂ F-CClF ₂	1.563	783.7	3.44
d-1,3,3-Trimethylnor- camphor	C10H16O	0.947	1320	
Trinitrotoluene (43)	C7H5(NO2)3	1.64	1610	
Turpentine		0.88	1255	
Unisis 800		0.87	1346	
Water, distilled (49,50)	H ₂ O	0.996	1498	-2.4
Water, heavy	D ² O		1400	
Water, sea		1.025	1531	-2.4
Wood Alcohol (40,41)	CH4O	0.791 (20°C)	1076	2.92
Xenon (45)	Xe		630	
m-Xylene (46)	C8H10	0.868 (15°C)	1343	
o-Xylene (29,46)	C8H10	0.897 (20°C)	1331.5	4.1
p-Xylene (46)	C8H10		1334	
Xylene hexafluoride	C8H4F6	1.37	879	
Zinc (7)	Zn		3298	