Technical Information **Proline t-mass I 500**

Thermal mass flowmeter

Insertion flowmeter with long-term stability as remote version with up to 4 I/Os

Application

- Measuring principle is characterized by a high operable flow range and direct mass flow measurement
- Measurement of utility and process gases as well as gas mixtures in circular piping or rectangular ducts

Device properties

- Insertion version for DN 80 to 1500 (3 to 60")
- Bidirectional measurement; high measuring performance
- Patented drift-free sensor with SIL 2
- Remote version with up to 4 I/Os
- Backlit display with touch control and WLAN access
- Standard cable between sensor and transmitter

Your benefits

- Flexible, convenient programming based on 21 standard gases or freely definable gas mixtures thereof
- High level of process control premium measurement accuracy and repeatability
- Reliable monitoring detection of process disturbances and reverse flow
- Flexible installation suitable for large dimensional range and circular pipes or rectangular ducts
- Full access to process and diagnostic information numerous, freely combinable I/Os and fieldbuses
- Reduced complexity and variety freely configurable I/O functionality
- Integrated verification Heartbeat Technology

Table of contents

About this document		Environment	46
Symbols	. 4	Ambient temperature range	46
		Storage temperature	46
Function and system design	6	Atmosphere	46
Measuring principle		Degree of protection	46
		Vibration- and shock-resistance	46
Measuring system		Interior cleaning	47
Equipment architecture		Electromagnetic compatibility (EMC)	47
Dependability	9	J , ,	
Toward.	10	Process	48
Input		Medium temperature range	48
Measured variable			48
Measuring range		Pressure-temperature ratings	48
Operable flow range	I	Flow limit	48
Input signal	14	Pressure loss	49
		Thermal insulation	49
Output	16		49
Output and input variants	- 1	3	50
	18	Cold tap, ambient pressure	
Signal on alarm		Cold tap, ambient pressure	50
Load			
Ex connection data	23		51
Low flow cut off	24	Dimensions in SI units	
Galvanic isolation	24	Dimensions in US units	
Protocol-specific data		Materials	66
Totocor specific data	24	Weight	68
		Process connections	68
Power supply			
Terminal assignment		Human interface	69
Device plugs available		Operating concept	
Pin assignment, device plug	26	Languages	
Supply voltage	26	Local operation	
Power consumption	26	Remote operation	
Current consumption	26	Service interface	
Power supply failure	26		
Electrical connection	27	Supported operating tools	
Terminals	32	HistoROM data management	15
Cable entries	32		
Cable specification	32	Certificates and approvals	75
		CE mark	
Performance characteristics	36	RCM-tick symbol	75
	- 1	Ex approval	75
Reference operating conditions		Functional safety	76
	I	HART certification	76
Repeatability	37	Radio approval	76
Response time	37	Additional certification	
Influence of ambient temperature	37	Other standards and guidelines	
Influence of medium temperature		Classification of process sealing between electrical	
Influence of medium pressure	37	systems and (flammable or combustible) process fluids in	
		accordance with ANSI/ISA 12.27.01	77
Installation	38		
Orientation	38	Ordering information	70
Installation instructions	38	Ordering information	70
Pipes	38		
Insertion depth	38	Application packages	79
Installation conditions for nipples	40		79
Aligning to the flow direction	40	Heartbeat Technology	79
Inlet and outlet runs	40	Second gas group	79
Mounting the transmitter housing	45	J J .	
J			

2

Accessories Device-specific accessories Communication-specific accessories Service-specific accessories System components	80 82 82
Supplementary documentation	84
Registered trademarks	85

About this document

Symbols Electrical symbols

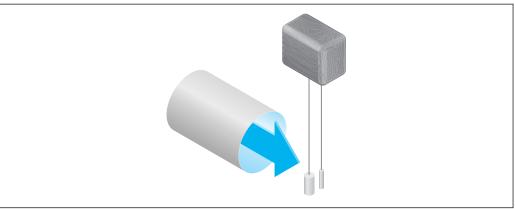
Symbol	Meaning
	Direct current
~	Alternating current
$\overline{\sim}$	Direct current and alternating current
≐	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
	Protective Earth (PE) A terminal which must be connected to ground prior to establishing any other connections.
	The ground terminals are situated inside and outside the device: Inner ground terminal: Connects the protectiv earth to the mains supply. Outer ground terminal: Connects the device to the plant grounding system.

Communication symbols

Symbol	Meaning
	Wireless Local Area Network (WLAN) Communication via a wireless, local network.
•	LED Light emitting diode is off.
举	LED Light emitting diode is on.
	LED Light emitting diode is flashing.

$Symbols \ for \ certain \ types \ of \ information$

Symbol	Meaning
✓	Permitted Procedures, processes or actions that are permitted.
✓ ✓	Preferred Procedures, processes or actions that are preferred.
X	Forbidden Procedures, processes or actions that are forbidden.
i	Tip Indicates additional information.
	Reference to documentation.
E	Reference to page.
	Reference to graphic.
	Visual inspection.


Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1., 2., 3.,	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
EX	Hazardous area
×	Safe area (non-hazardous area)
≋➡	Flow direction

Function and system design

Measuring principle

The thermal measuring principle is based on the cooling of a heated resistance thermometer (PT100) from which heat is extracted by the passing medium.

Δ0016823

The medium passes two PT100 resistance thermometers in the measurement section. One of these is used in the conventional way as a temperature sensor, while the other serves as a heating element. The temperature sensor monitors and records the effective process temperature while the heated resistance thermometer is kept at a constant differential temperature (compared to the measured process temperature) by controlling the electrical current used by the heating element. The greater the mass flow passing over the heated resistance thermometer, the greater the extent to which cooling takes place and therefore the stronger the current required to maintain a constant differential temperature. This means that the heat current measured is an indicator of the mass flow rate of the medium.

Gas Engine

The integrated Gas Engine functionality ensures maximum measuring performance for flow measurement. The Gas Engine developed by Endress+Hauser is a software-based database of typical standard gases and their specific properties. The Gas Engine calculates the properties of gas mixtures based on the percentage shares of up to 8 gas components.

The Gas Engine functionality enables:

- Calibration with air; no need for expensive and complex calibration with real gas
- Precise conversion of air to other gases; no recalibration required
- Exact measurement of single gases and also of gas mixtures
- Dynamic correction of pressure and temperature changes

The device can be configured for 21 freely selectable gases and water vapor.

Gases available for selection:

- Ammonia
- Argon
- ButaneChlorine
- Chlorine
- Hydrogen chloride
- Ethane
- Ethylene

- Helium
- Carbon dioxide
- Carbon monoxide
- Krypton
- Air
- Methane
- Neon

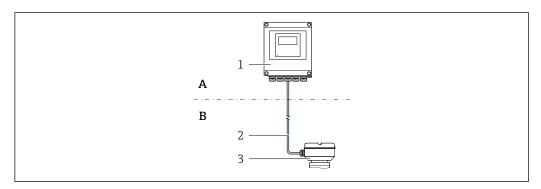
- Ozone ¹)
- Propane
- Oxygen
- Hydrogen sulfide
- Nitrogen
- Hydrogen
- Xenon
- 1) Can only be selected as an individual gas or as a gas mixture with oxygen.

Mixtures of these gases, e.g. natural gas, can be programmed easily and quickly on the basis of the percentage shares.

For other gases, contact the Endress+Hauser sales organization responsible for your area.

Bidirectional measurement and reverse flow detection

Conventional thermal mass flowmeters cannot distinguish between forward and reverse flows. They always record flow in both directions with the same algebraic sign. Endress+Hauser's thermal flowmeter is available in this conventional unidirectional design, or as a bidirectional flowmeter. Both versions feature sensors that are protected in stainless steel. The bidirectional version can distinguish between the two flow directions and measure and totalize the flow in both directions with the same degree of accuracy.


The version to detect reverse flow only measures flow in the positive direction. The reverse flow is detected by the device but is not totalized.

Measuring system

The measuring system consists of a transmitter and a sensor. The transmitter and sensor are mounted in physically separate locations. They are interconnected by connecting cables.

Proline 500 - digital transmitter

For use in applications not required to meet special requirements due to ambient or operating conditions.

- A Non-hazardous area or Zone 2; Class I, Division 2
- B Non-hazardous area or Zone 2; Class I, Division 2 or Zone 1; Class I, Division 1
- 1 Transmitte
- 2 Connecting cable: cable, separate, standard
- 3 Sensor connection housing with integrated ISEM
- Electronics in the transmitter housing, ISEM (intelligent sensor electronics module) in the sensor connection housing
- Signal transmission: digital Order code for "Integrated ISEM electronics", option A "Sensor"

Connecting cable

Connecting cables can be ordered in various lengths $\rightarrow \triangleq 80$.

- Length
 - Zone 2; Class I, Division 2: max. 300 m (1000 ft)
 - Zone 1; Class I, Division 1: max. 150 m (500 ft)
- Standard cable with common shield (pair-stranded)
- Not sensitive to external EMC interference.

Hazardous area

Use in: Zone 2; Class I, Division 2

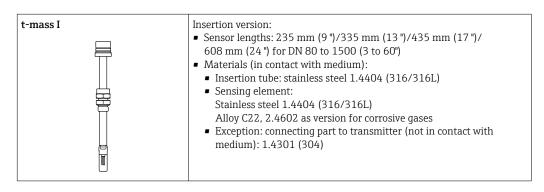
Mixed installation is possible:

- Sensor: Zone 1; Class I, Division 1
- Transmitter: Zone 2: Class I, Division 2

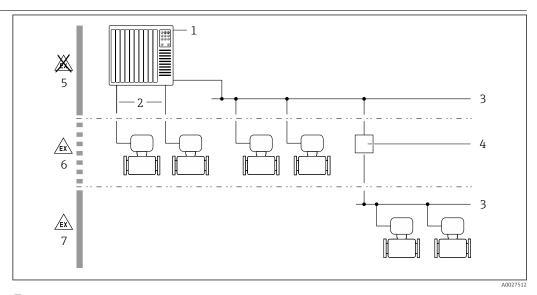
Device versions and materials

- Transmitter housing
 - Aluminum, coated: aluminum, AlSi10Mg, coated
 - Material: polycarbonate
- Material of window in transmitter housing
 - Aluminum, coated: glass
 - Material: polycarbonate

Configuration


- External operation via 4-line, backlit, graphic local display with touch control and guided menus ("Make-it-run" wizards) for application-specific commissioning.
- Via service interface or WLAN connection:
 - Operating tools (e.g. FieldCare, DeviceCare)
 - Web server (access via Web browser, e.g. Microsoft Internet Explorer, Microsoft Edge)

Sensor connection housing


Different versions of the connection housing are available.

Order code for "Sensor connection housing", option A, "Aluminum, coated": Aluminum, AlSi10Mg, coated
Order code for "Sensor connection housing", option L, "Cast, stainless": 1.4409 (CF3M) similar to 316L

Sensor

Equipment architecture

 $\blacksquare 1$ Possibilities for integrating measuring devices into a system

- 1 Control system (e.g. PLC)
- 2 Connecting cable (0/4 to 20 mA HART etc.)
- 3 Fieldbus
- 4 Coupler
- 5 Non-hazardous area
- 6 Hazardous area: Zone 2; Class I, Division 2
- Hazardous area: Zone 1; Class I, Division 1

Dependability

IT security

Our warranty is valid only if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the device and associated data transfer, must be implemented by the operators themselves in line with their security standards.

Device-specific IT security

The device offers a range of specific functions to support protective measures on the operator's side. These functions can be configured by the user and guarantee greater in-operation safety if used correctly. An overview of the most important functions is provided in the following section.

Function/interface	Factory setting	Recommendation	
Write protection via hardware write protection switch $\Rightarrow \triangleq 10$	Not enabled.	On an individual basis following risk assessment.	
Access code (also applies for Web server login or FieldCare connection) → 🖺 10	Not enabled (0000).	Assign a customized access code during commissioning.	
WLAN (order option in display module)	Enabled.	On an individual basis following risk assessment.	
WLAN security mode	Enabled (WPA2- PSK)	Do not change.	
WLAN passphrase (password) → 🖺 10	Serial number	Assign an individual WLAN passphrase during commissioning.	
WLAN mode	Access Point	On an individual basis following risk assessment.	
Web server→ 🗎 10	Enabled.	On an individual basis following risk assessment.	
CDI-RJ45 service interface → 🖺 10	-	On an individual basis following risk assessment.	

Protecting access via hardware write protection

Write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare) can be disabled via a write protection switch (DIP switch on the motherboard). When hardware write protection is enabled, only read access to the parameters is possible.

Hardware write protection is disabled when the device is delivered.

Protecting access via a password

Different passwords are available to protect write access to the device parameters or access to the device via the WLAN interface.

User-specific access code

Protect write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare). Access authorization is clearly regulated through the use of a user-specific access code.

WLAN passphrase

The network key protects a connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface which can be ordered as an option.

Infrastructure mode

When the device is operated in infrastructure mode, the WLAN passphrase corresponds to the WLAN passphrase configured on the operator side.

User-specific access code

Write access to the device parameters via the local display, Web browser or operating tool (e.g. FieldCare, DeviceCare) can be protected by the modifiable, user-specific access code.

WLAN passphrase: Operation as WLAN access point

A connection between an operating unit (e.g. notebook or tablet) and the device via the WLAN interface, which can be ordered as an optional extra, is protected by the network key. The WLAN authentication of the network key complies with the IEEE 802.11 standard.

When the device is delivered, the network key is pre-defined depending on the device. It can be changed via the **WLAN settings** submenu in the **WLAN passphrase** parameter.

Infrastructure mode

A connection between the device and WLAN access point is protected by means of an SSID and passphrase on the system side. Please contact the relevant system administrator for access.

General notes on the use of passwords

- The access code and network key supplied with the device should be changed during commissioning.
- Follow the general rules for generating a secure password when defining and managing the access code or network key.
- The user is responsible for the management and careful handling of the access code and network key.

Access via Web server

The device can be operated and configured via a Web browser with the integrated Web server. The connection is via the service interface (CDI-RJ45) or the WLAN interface.

The Web server is enabled when the device is delivered. The Web server can be disabled if necessary (e.g. after commissioning) via the **Web server functionality** parameter.

The device and status information can be hidden on the login page. This prevents unauthorized access to the information.

[i

For detailed information on device parameters, see: The "Description of Device Parameters" document

Access via service interface (CDI-RJ45)

The device can be connected to a network via the service interface (CDI-RJ45). Device-specific functions guarantee the secure operation of the device in a network.

The use of relevant industrial standards and guidelines that have been defined by national and international safety committees, such as IEC/ISA62443 or the IEEE, is recommended. This includes organizational security measures such as the assignment of access authorization as well as technical measures such as network segmentation.

Input

Measured variable

Measured process variables

- Mass flow
- Temperature

Calculated process variables

- Corrected volume flow
- Volume flow
- FAD volume flow
- Flow velocity
- Calorific value
- 2nd temperature heat difference
- Heat flow
- Energy flow
- Density

Process variables available for order

Order code for "Sensor version":

- Option SB "Bidirectional" measures the flow in both directions (»positive« and »negative« flow) and totalizes the flow in both directions. The device is calibrated in both directions.
- Option SC "Reverse flow detection" only measures the flow in the positive direction. The reverse flow is detected by the device but is not totalized. The device is only calibrated in the positive forward flow direction.

Order code for "Application package":

Option EV "Second gas group" enables the configuration of two different standard gases/gas mixtures in the device and allows the user to switch from one gas group to another using the status input or (if available) via bus communication.

Measuring range

The measuring ranges calibrated for air are indicated in the following section. For information on other gases and process conditions, contact your sales organization or use the Applicator selection software.

SI units

- Order code for "Sensor version; sensor; insertion tube", option SA "Unidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube", option HA "Unidirectional; Alloy; stainless steel"

DN [mm]	Full scale value [kg/h] (Air, 20°C, 1.013 bar a)		Full scale va (Air, 0°C, 1	lue [Nm3/h] .013 bar a)
	Minimum	Maximum	Minimum	Maximum
80	21	2 086	16	1613
100	33	3 2 6 0	25	2 521
150	73	7335	57	5 672
200	130	13 040	101	10084
250	204	20375	158	15757
300	293	29340	227	22 689
400	522	52 160	403	40337
500	815	81500	630	63 026
600	1174	117 360	908	90758
700	1597	159740	1235	123 531

12

DN [mm]	Full scale value [kg/h] (Air, 20°C, 1.013 bar a)		Full scale va (Air, 0°C, 1	
	Minimum	Maximum	Minimum	Maximum
1000	3260	326 000	2 52 1	252 105
1500	7335	733 501	5 672	567 236

- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"

DN [mm]	Full scale value [kg/h] (Air, 20°C, 1.013 bar a)		Full scale value [Nm3/h] (Air, 0°C, 1.013 bar a)	
	Minimum	Maximum	Minimum	Maximum
80	13	1310	10	1012
100	23	2310	17	1786
150	47	4750	36	3 673
200	84	8475	65	6553
250	132	13250	102	10246
300	190	19000	146	14692
400	337	33750	260	26099
500	530	53 000	409	40 986
600	762	76250	589	58966
700	1038	103820	802	80 286
1000	2 1 1 9	211900	1638	163 868
1500	4767	476750	3 686	368 683

US units

- Order code for "Sensor version; sensor; insertion tube", option SA "Unidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube", option HA "Unidirectional; Alloy; stainless steel"

DN [in]	Full scale value [lb/h] (Air, 68°F, 14.7 psi a)		Full scale va (Air, 59°F,	alue [SCFM] 14.7 psi a)
	Minimum	Maximum	Minimum	Maximum
3	42	4173	9	909
4	74	7 4 1 9	16	1616
6	167	16693	36	3 6 3 6
8	297	29677	65	6464
10	464	46371	101	10 100
12	668	66774	145	14 544
16	1187	118709	259	25856
20	1855	185 482	404	40 400
24	2671	267 094	582	58 176
28	3 6 3 5	363 545	792	79 184
40	7419	741929	1616	161600
60	16693	1669340	3 636	363 600

- Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel"
- Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"

DN [in]	Full scale v (Air, 68°F,	alue [lb/h] 14.7 psi a)	Full scale va (Air, 59°F,	alue [SCFM] 14.7 psi a)
	Minimum	Maximum	Minimum	Maximum
3	29	2 981	6	648
4	52	5 2 5 7	11	1144
6	108	10810	23	2 354
8	192	19287	42	4200
10	301	30155	65	6567
12	432	43241	94	9417
16	768	76810	167	16729
20	1206	120620	262	26272
24	1735	173 533	377	37797
28	2 3 6 2	236279	514	51463
40	4822	482 253	1050	105 039
60	10850	1085012	2363	236326

The flow rates listed are only representative for the calibrated conditions and do not necessarily reflect the measuring capacity of the measuring device under operating conditions and the actual pipe internal diameters present on site. To make sure that the correct device version and sizing is selected to suit the application, contact the sales organization or use the Applicator selection software.

Special applications

High gas flow velocities (>70 m/s)

In the case of high gas flow velocities, it is advisable to read in the process pressure dynamically or to enter the pressure as accurately as possible, as a velocity-dependent correction is performed.

Light gases (hydrogen, helium)

- The reliable measurement of light gases can be difficult due to their very high thermal conductivity. Depending on the application, the flow rates of light gases are often particularly slow and the flow profiles are not sufficiently developed. The flows are frequently in the laminar flow range, while turbulent flow would actually be needed for optimum measurement.
- Despite loss of accuracy and linearity in applications with light gases and low flow rates, the device measures with a good degree of repeatability and is therefore suitable for monitoring flow conditions (e.g. leak detection).
- The recommended inlet runs must be doubled for light gases. \rightarrow $\stackrel{\triangle}{=}$ 40

Operable flow range

- 200:1 with factory calibration
- Up to 1000:1 with application-specific adjustment

Input signal

Output and input variants $\rightarrow = 16$

External values

- Analog inputs 4-20 mA
- Digital inputs

Pressure values can be transmitted as absolute or gauge pressure. For gauge pressure, the atmospheric pressure must be known or specified by the customer.

HART protocol

The measured values are written from the automation system to the measuring device via the HART protocol. The pressure transmitter must support the following protocol-specific functions:

- HART protocol
- Burst mode

Current input

Digital communication

The measured values can be written from the automation system to the measuring via: Modbus $\ensuremath{\mathsf{RS485}}$

Current input 0/4 to 20 mA

Current input	0/4 to 20 mA (active/passive)
Current span	4 to 20 mA (active)0/4 to 20 mA (passive)
Resolution	1 μΑ
Voltage drop	Typically: 0.6 to 2 V for 3.6 to 22 mA (passive)
Maximum input voltage	≤ 30 V (passive)
Open-circuit voltage	≤ 28.8 V (active)
Possible input variables	 Pressure Temperature Mol-% (gas analyzer) External reference flow rate (in-situ adjustment)

Status input

Maximum input values	■ DC -3 to 30 V ■ If status input is active (ON): $R_i > 3 \text{ k}\Omega$
Response time	Configurable: 5 to 200 ms
Input signal level	 Low signal: DC -3 to +5 V High signal: DC 12 to 30 V
Assignable functions	 Off Reset the individual totalizers separately Reset all totalizers Flow override Second gas group Zero point adjustment

Output

Output and input variants

Depending on the option selected for output/input 1, different options are available for the other outputs and inputs. Only one option can be selected for each output/input 1 to 4. The following tables must be read vertically (\downarrow) .

Example: If the option BA "4-20 mA HART" was selected for output/input 1, one of the options A, B, D, E, H, I or J is available for output 2 and one of the options A, B, D, E, H, I or J is available for output 3 and 4.

Output/input 1 and options for output/input 2

Options for output/input 3 and 4

Order code for "Output; input 1" (020) →		Possible options									
Current output 4 to 20 mA HART	BA										
Current output 4 to 20 mA HART Ex i passive	\	CA									
Current output 4 to 20 mA HART Ex i active		\	CC								
Modbus RS485								\	MA		
Order code for "Output; input 2" (021) →	\	4	4	4	4	4	\	\	\	\	4
Not assigned	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Current output 4 to 20 mA	В			В		В	В		В	В	В
Current output 4 to 20 mA Ex i passive		С	С		С			С			
User-configurable input/output 1)	D			D		D	D		D	D	D
Pulse/frequency/switch output	Е			E		Е	E		Е	Е	Е
Pulse/frequency/switch output Ex i passive		G	G		G			G			
Relay output	Н			Н		Н	Н		Н	Н	Н
Current input 0/4 to 20 mA	I			I		I	I		I	I	I
Status input	J			J		J	J		J	J	J

Output/input 1 and options for output/input 3 and 4 $\,$

Options for output/input $2 \rightarrow \triangle 16$

Order code for "Output; input 1" (020) →		Possible options									
Current output 4 to 20 mA HART	BA										
Current output 4 to 20 mA HART Ex i passive	1	CA									
Current output 4 to 20 mA HART Ex i active		4	СС								
Modbus RS485								4	MA		
Order code for "Output; input 3" (022), "Output; input 4" (023) →	4	4	\	4	4	\	1	1	\	\	\
Not assigned	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Current output 4 to 20 mA	В					В			В	В	В
Current output 4 to 20 mA Ex i passive 1)		С	С								
User-configurable input/output	D					D			D	D	D
Pulse/frequency/switch output	Е					Е			Е	Е	E
Pulse/frequency/switch output Ex i passive ²⁾		G	G								
Relay output	Н					Н			Н	Н	Н
Current input 0/4 to 20 mA	I					I			I	I	I
Status input	J					J			J	J	J

For output/input 4 the current output 4 to 20 mA Ex i passive (C) is not available. 1)

²⁾ For output/input 4 the pulse/frequency/switch output Ex i passive (G) is not available.

Output signal

Current output 4 to 20 mA HART

Order code	"Output; input 1" (20): Option BA: current output 4 to 20 mA HART
Signal mode	Can be set to: Active Passive
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA (only if the signal mode is active) Fixed current
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	250 to 700 Ω
Resolution	0.38 μΑ
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow FAD volume flow Flow velocity Temperature Energy flow Pressure Density Heat flow Electronics temperature 2nd temperature heat difference For SIL (application package), only mass flow

Current output 4 to 20 mA HART Ex i

Order code	"Output; input 1" (20) choose from: Option CA: current output 4 to 20 mA HART Ex i passive Option CC: current output 4 to 20 mA HART Ex i active
Signal mode	Depends on the selected order version.
Current range	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA continuous if the signal mode is active) Fixed current
Open-circuit voltage	DC 21.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	 250 to 400 Ω (active) 250 to 700 Ω (passive)
Resolution	0.38 μΑ

Damping	Configurable: 0 to 999.9 s
Assignable measured variables	 Mass flow Volume flow Corrected volume flow FAD volume flow Flow velocity Temperature Energy flow Pressure Density Heat flow Electronics temperature 2nd temperature heat difference For SIL (application package), only mass flow

Modbus RS485

Physical interface	RS485 in accordance with EIA/TIA-485 standard
Terminating resistor	Integrated, can be activated via DIP switches

Current output 4 to 20 mA

Order code	"Output; input 2" (21), "Output; input 3" (022) or "Output; input 4" (023): Option B: current output 4 to 20 mA
Signal mode	Can be set to: Active Passive
Current span	Can be set to: 4 to 20 mA NAMUR 4 to 20 mA US 4 to 20 mA 0 to 20 mA (only if the signal mode is active) Fixed current
Maximum output values	22.5 mA
Open-circuit voltage	DC 28.8 V (active)
Maximum input voltage	DC 30 V (passive)
Load	0 to 700Ω
Resolution	0.38 μΑ
Damping	Configurable: 0 to 999.9 s
Assignable measured variables	Mass flow Volume flow Corrected volume flow FAD volume flow Flow velocity Temperature Energy flow Pressure Density Heat flow Electronics temperature 2nd temperature heat difference For SIL (application package), only mass flow

Pulse/frequency/switch output

Function	Can be set to pulse, frequency or switch output
Version	Open collector Can be set to: Active Passive Passive NAMUR
Maximum input values	DC 30 V, 250 mA (passive)
Open-circuit voltage	DC 28.8 V (active)
Voltage drop	For 22.5 mA: ≤ DC 2 V
Pulse output	
Maximum input values	DC 30 V, 250 mA (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Pulse width	Configurable: 0.05 to 2 000 ms
Maximum pulse rate	10 000 Impulse/s
Pulse value	Adjustable
Assignable measured variables	 Mass flow Volume flow Corrected volume flow FAD volume flow Energy flow Heat flow
	For SIL (application package), only mass flow
Frequency output	
Maximum input values	DC 30 V, 250 mA (passive)
Maximum output current	22.5 mA (active)
Open-circuit voltage	DC 28.8 V (active)
Output frequency	Adjustable: end value frequency 2 to 10 000 Hz (f $_{max}$ = 12 500 Hz)
Damping	Configurable: 0 to 999.9 s
Pulse/pause ratio	1:1
Assignable measured variables	 Mass flow Volume flow Corrected volume flow FAD volume flow Flow velocity Temperature Energy flow Pressure Density Heat flow Electronics temperature 2nd temperature heat difference For SIL (application package), only mass flow
Switch output	
Maximum input values	DC 30 V, 250 mA (passive)
	DC 28.8 V (active)
Open-circuit voltage	DO 20.0 V (detave)
Open-circuit voltage Switching behavior	Binary, conductive or non-conductive

Number of switching cycles	Unlimited
Assignable functions	 Off On Diagnostic behavior Limit value Off Mass flow Volume flow Corrected volume flow FAD volume flow Heat flow Energy flow Flow velocity Density Calorific value Temperature 2nd temperature heat difference Totalizer 1-3 Electronics temperature Flow direction monitoring Status Low flow cut off

Relay output

Function	Switch output			
Version	Relay output, galvanically isolated			
Switching behavior	Can be set to: NO (normally open), factory setting NC (normally closed)			
Maximum switching capacity (passive)	■ DC 30 V, 0.1 A ■ AC 30 V, 0.5 A			
Assignable functions	 Off On Diagnostic behavior Limit value Off Mass flow Volume flow Corrected volume flow FAD volume flow Heat flow Energy flow Flow velocity Density Temperature 2nd temperature heat difference Totalizer 1-3 Electronics temperature Flow direction monitoring Status Low flow cut off 			

User-configurable input/output

 $\textbf{One} \ specific input or output is assigned to a user-configurable input/output (configurable I/O) during device commissioning.$

The following inputs and outputs are available for assignment:

- Choice of current output: 4 to 20 mA (active), 0/4 to 20 mA (passive)
- Pulse/frequency/switch output
- Choice of current input: 4 to 20 mA (active), 0/4 to 20 mA (passive)
- Status input

The technical values correspond to those of the inputs and outputs described in this section.

Signal on alarm

Depending on the interface, failure information is displayed as follows:

HART current output

Device diagnostics	Device condition can be read out via HART Command 48
--------------------	--

Modbus RS485

Failure mode	Choose from:
	■ NaN value instead of current value
	■ Last valid value

Current output 0/4 to 20 mA

4 to 20 mA

0 to 20 mA

Failure mode	Choose from:	
	■ Maximum alarm: 22 mA	
	■ Freely definable value between: 0 to 20.5 mA	

Pulse/frequency/switch output

Pulse output			
Failure mode	Choose from: Actual value No pulses		
Frequency output			
Failure mode	Choose from: Actual value O Hz Defined value (f max 2 to 12 500 Hz)		
Switch output			
Failure mode	Choose from: Current status Open Closed		

Relay output

Failure mode	Choose from: Current status Open
	Closed

Local display

Plain text display	With information on cause and remedial measures	
Backlight	Red backlighting indicates a device error.	

Status signal as per NAMUR recommendation NE 107

Interface/protocol

- Via digital communication:
 - HART protocol
 - Modbus RS485
- Via service interface
 - CDI-RJ45 service interface
 - WLAN interface

Plain text display	With information on cause and remedial measures

Web browser

Plain text display	With information on cause and remedial measures
--------------------	---

Light emitting diodes (LED)

Status information	Status indicated by various light emitting diodes		
	The following information is displayed depending on the device version: • Supply voltage active		
	 Data transmission active Device alarm/error has occurred 		

Load

Output signal \rightarrow \blacksquare 18

Ex connection data

Safety-related values

Order code for "Output; input 1"	Output type	Safety-related values "Output; input 1"	
		26 (+)	27 (-)
Option BA	Current output 4 to 20 mA HART	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	
Option MA	Modbus RS485	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$	

Order code for	Output type	Safety-related values							
"Output; input 2"; "Output; input 3"		Output;	Output; input 2		Output; input 2 Out		input 3		
"Output; input 4"		24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)		
Option B	Current output 4 to 20 mA	$U_{\rm N} = 30$ $U_{\rm M} = 250$	20						
Option D	User-configurable input/output	$U_{N} = 30 V_{DC}$ $U_{M} = 250 V_{AC}$							
Option E	Pulse/frequency/switch output	$U_{\rm N} = 30 V_{\rm DC}$ $U_{\rm M} = 250 V_{\rm AC}$							

Order code for	Output type	Safety-related values					
"Output; input 2"; "Output; input 3"		Output;	Output; input 2		input 3		
"Output; input 4"		24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
Option H	Relay output	$U_N = 30 \text{ N}$ $I_N = 100 \text{ r}$ $U_M = 250 \text{ N}$	nA _{DC} /500	mA _{AC}			
Option I	Current input 4 to 20 mA	$U_{\rm N} = 30 \text{V}$ $U_{\rm M} = 250 \text{V}$	20				
Option J	Status input	$U_{\rm N} = 30 \text{V}$ $U_{\rm M} = 250 \text{V}$					

Low flow cut off

The switch points for low flow cut off are user-selectable.

Galvanic isolation

The outputs are galvanically isolated from one another and from earth (PE). $\,$

Protocol-specific data

HART

Manufacturer ID	0x11
Device type ID	0x1160
HART protocol revision	7
Device description files (DTM, DD)	Information and files under: www.endress.com
HART load	Min. 250 Ω
System integration	Information on system integration: Operating Instructions . • Measured variables via HART protocol • Burst Mode functionality

Modbus RS485

Protocol	Modbus Applications Protocol Specification V1.1
Response times	 Direct data access: typically 25 to 50 ms Auto-scan buffer (data range): typically 3 to 5 ms
Device type	Slave
Slave address range	1 to 247
Broadcast address range	0
Function codes	 03: Read holding register 04: Read input register 06: Write single registers 08: Diagnostics 16: Write multiple registers 23: Read/write multiple registers
Broadcast messages	Supported by the following function codes: O6: Write single registers 16: Write multiple registers 23: Read/write multiple registers
Supported baud rate	 1200 BAUD 2400 BAUD 4800 BAUD 9600 BAUD 19200 BAUD 38400 BAUD 57600 BAUD 115200 BAUD
Data transfer mode	ASCII RTU

24

Data access	Each device parameter can be accessed via Modbus RS485. For Modbus register information
System integration	Information on system integration: Operating Instructions . Modbus RS485 information Function codes Register information Response time Modbus data map

Power supply

Terminal assignment

Transmitter: supply voltage, input/outputs

HART

Supply	voltage	Input/	output L	Input/output 2		Input/output 3		Input/output 4	
1 (+)	2 (-)	26 (+)	27 (-)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		Dev	Device-specific terminal assignment: adhesive label in terminal cover. → 🖺 16.						

Modbus RS485

Supply	voltage	Input/	output l	Input/output 2		Input/	output 3	Input/	output 1
1 (+)	2 (-)	26 (B)	27 (A)	24 (+)	25 (-)	22 (+)	23 (-)	20 (+)	21 (-)
		Devi	Device-specific terminal assignment: adhesive label in terminal cover. → 🖺 16.						

Transmitter and sensor connection housing: connecting cable

The sensor and transmitter, which are mounted in separate locations, are interconnected by a connecting cable. The cable is connected via the sensor connection housing and the transmitter housing.

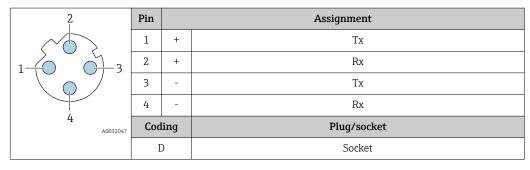
Terminal assignment and connection of the connecting cable: Proline 500 – digital \rightarrow $\ \ \, \)$ 27

Device plugs available

Device plugs may not be used in hazardous areas!

Device plug for connecting to the service interface:

Order code for "Accessory mounted" option NB, adapter RJ45 M12 (service interface) \rightarrow \cong 26


Order code for "Accessory mounted", option NB "Adapter RJ45 M12 (service interface)"

Order code	Cable entry/coupling → 🖺 27			
"Accessory mounted"	Cable entry 2	Cable entry 3		
NB	Plug M12 × 1	-		

Pin assignment, device plug

Service interface

Order code for "Accessories mounted", option NB: Adapter RJ45 M12 (service interface)

- Recommended plug:
 Binder, series 763, part no. 99 3729 810 04
 - Phoenix, part no. 1543223 SACC-M12MSD-4Q

Supply voltage

Order code for "Power supply"	Terminal voltage		Frequency range
Option D	DC 24 V	±20%	-
Option E	AC 100 to 240 V	-15 to +10%	50/60 Hz, ±4 Hz
Option I	DC 24 V	±20%	-
Option I	AC 100 to 240 V	-15 to +10%	50/60 Hz, ±4 Hz

Power consumption

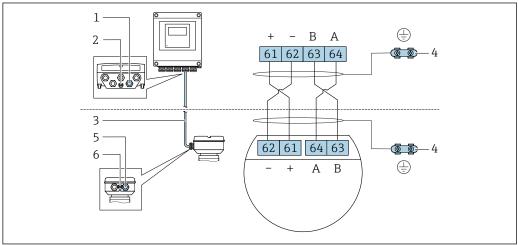
Transmitter

Max. 10 W (active power)

switch-on current	Max. 36 A (<5 ms) as per NAMUR Recommendation NE 21
-------------------	---

Current consumption

Transmitter

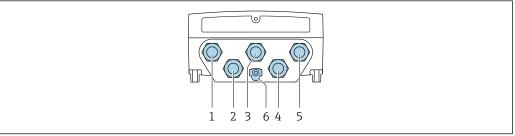

- Max. 400 mA (24 V)
- Max. 200 mA (110 V, 50/60 Hz; 230 V, 50/60 Hz)

Power supply failure

- Totalizers stop at the last value measured.
- Depending on the device version, the configuration is retained in the device memoryor in the pluggable data memory (HistoROM DAT).
- Error messages (incl. total operated hours) are stored.

Electrical connection

Connection of connecting cable: Proline 500 - digital

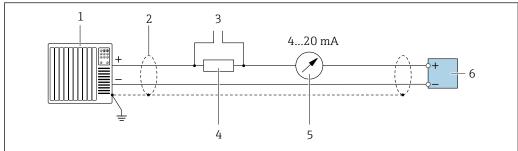

- Cable entry for cable on transmitter housing
- 2 Protective ground (PE)
- Connecting cable ISEM communication
- Grounding via ground connection; on device plug versions grounding is through the plug itself
- Cable entry for cable or connection of device plug on sensor connection housing
- Protective ground (PE)

Connecting the transmitter

- Device plug pin assignment $\rightarrow \stackrel{\triangle}{=} 26$

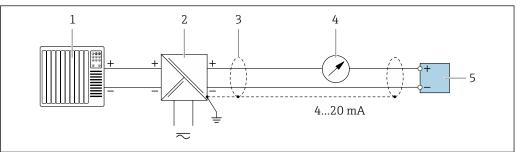
Connecting the Proline 500 - digital transmitter

A0028200


- Terminal connection for supply voltage
- Terminal connection for signal transmission, input/output 2
- 3 Terminal connection for signal transmission, input/output
- Terminal connection for connecting cable between sensor and transmitter
- Terminal connection for signal transmission, input/output; optional: terminal connection for external WLAN antenna
- Protective ground (PE)
- An adapter for RJ45 and the M12 connector is optionally available: Order code for "Accessories", option NB: "Adapter RJ45 M12 (service interface)"

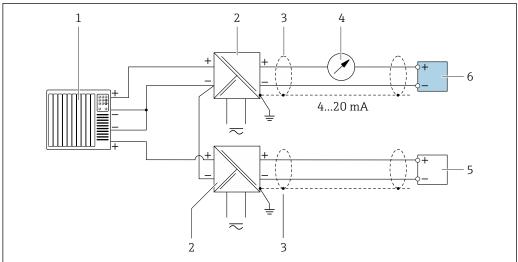
The adapter connects the service interface (CDI-RJ45) to an M12 connector mounted in the cable entry. Therefore the connection to the service interface can be established via an M12 connector without opening the device.

Network connection (DHCP client) via service interface (CDI-RJ45) → 🗎 71

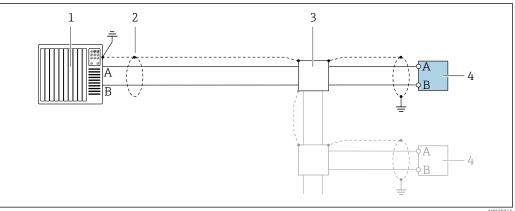

Connection examples

Current output 4 to 20 mA HART

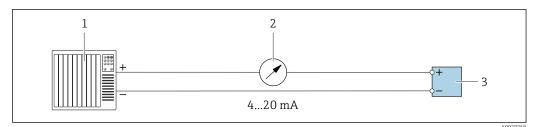
A0029055


- 2 Connection example for 4 to 20 mA HART current output (active)
- 1 Automation system with current input (e.g. PLC)
- 3 Connection for HART operating devices $\rightarrow \triangleq 69$
- 4 Resistor for HART communication ($\geq 250 \Omega$): observe maximum load $\rightarrow \blacksquare 18$
- 5 Analog display unit: observe maximum load $\rightarrow \square$ 18
- 6 Transmitter

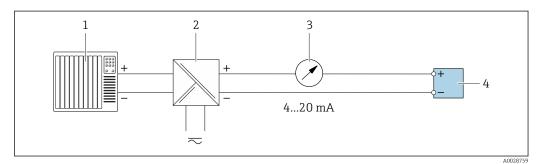
A002876


- 3 Connection example for 4 to 20 mA HART current output (passive)
- 1 Automation system with current input (e.g. PLC)
- 2 Power supply
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications $\rightarrow \stackrel{\triangle}{=} 32$
- 4 Analog display unit: observe maximum load → 🖺 18
- 5 Transmitter

HART input

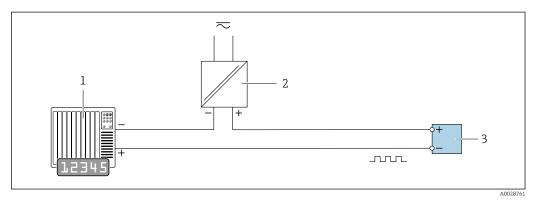

- € 4 Connection example for HART input with a common negative (passive)
- 1 Automation system with HART output (e.g. PLC)
- 2 Active barrier for power supply (e.g. RN221N)
- 3 Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- Analog display unit: observe maximum load $\rightarrow~\cong~18$
- Pressure measuring device (e.g. Cerabar M, Cerabar S): see requirements
- 6 Transmitter

Modbus RS485


- **■** 5 Connection example for Modbus RS485, non-hazardous area and Zone 2; Class I, Division 2
- Control system (e.g. PLC)
- Cable shield provided at one end. The cable shield must be grounded at both ends to comply with EMC requirements; observe cable specifications
- Distribution box
- Transmitter

Current output 4-20 mA

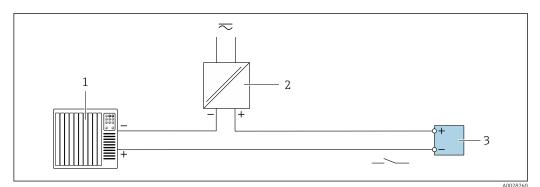
■ 6 Connection example for 4-20 mA current output (active)


- 1 Automation system with current input (e.g. PLC)
- 3 Transmitter

■ 7 Connection example for 4-20 mA current output (passive)

- 1 Automation system with current input (e.g. PLC)
- 2 Active barrier for power supply (e.g. RN221N)
- 4 Transmitter

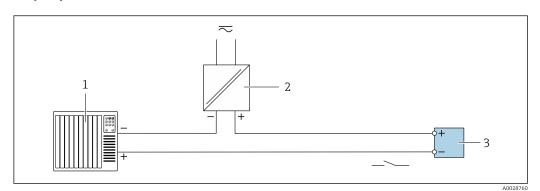
Pulse/frequency output


 \blacksquare 8 Connection example for pulse/frequency output (passive)

- 1 Automation system with pulse/frequency input (e.g. PLC)
- 2 Power supply
- 3 Transmitter: Observe input values $\rightarrow \triangleq 20$

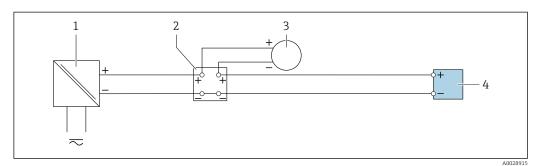
30 Endress+Hauser

11002075


Switch output

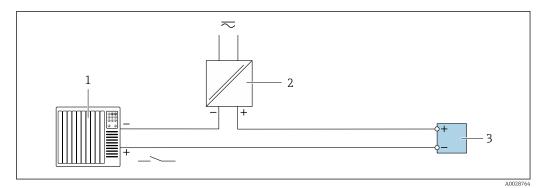
■ 9 Connection example for switch output (passive)

- 1 Automation system with switch input (e.g. PLC)
- 2 Power supply3 Transmitter: 0
- 3 Transmitter: Observe input values → 🖺 20


Relay output

■ 10 Connection example for relay output (passive)

- 1 Automation system with relay input (e.g. PLC)
- 2 Power supply


Current input

 \blacksquare 11 Connection example for 4 to 20 mA current input

- 1 Power supply
- 2 Terminal box
- 3 External measuring device (to read in pressure or temperature, for instance)
- 4 Transmitter

Status input

■ 12 Connection example for status input

- 1 Automation system with status output (e.g. PLC)
- 2 Power supply
- 3 Transmitter

Terminals

Spring-loaded terminals: Suitable for strands and strands with ferrules. Conductor cross-section 0.2 to $2.5~{\rm mm}^2$ (24 to $12~{\rm AWG}$).

Cable entries

- Cable gland: M20 \times 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in)
- Thread for cable entry:
 - NPT ½"
 - G ½"
 - M20

Cable specification

Permitted temperature range

- The installation guidelines that apply in the country of installation must be observed.
- The cables must be suitable for the minimum and maximum temperatures to be expected.

Power supply cable (incl. conductor for the inner ground terminal)

Standard installation cable is sufficient.

Protective grounding cable for the outer ground terminal

Conductor cross-section ≤2.08 mm² (14 AWG)

Grounding impedance must be less than 2 Ω .

Signal cable

Current output 4 to 20 mA HART

A shielded cable is recommended. Observe grounding concept of the plant.

Modbus RS485

The EIA/TIA-485 standard specifies two types of cable (A and B) for the bus line which can be used for every transmission rate. Cable type A is recommended.

Cable type	A
Characteristic impedance	135 to 165 Ω at a measuring frequency of 3 to 20 MHz
Cable capacitance	< 30 pF/m
Wire cross-section	> 0.34 mm ² (22 AWG)
Cable type	Twisted pairs
Loop resistance	≤110 Ω/km
Signal damping	Max. 9 dB over the entire length of the cable cross-section
Shield	Copper braided shielding or braided shielding with foil shield. When grounding the cable shield, observe the grounding concept of the plant.

Current output 0/4 to 20 mA

Standard installation cable is sufficient.

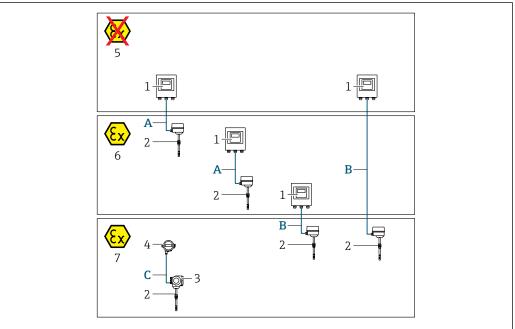
Pulse/frequency/switch output

Standard installation cable is sufficient.

Relay output

Standard installation cable is sufficient.

Current input 0/4 to 20 mA


Standard installation cable is sufficient.

Status input

Standard installation cable is sufficient.

Choice of connecting cable between the transmitter and sensor

Depends on the type of transmitter and the installation zones

- Proline 500 digital transmitter
- 2 Sensor t-mass
- Proline 300 transmitter
- Remote display (DKX001)
- Non-hazardous area
- Hazardous area: Zone 2; Class I, Division 2
- Hazardous area: Zone 1; Class I, Division 1
- Standard cable to 500 digital transmitter Transmitter installed in the non-hazardous area or hazardous area: Zone 2; Class I, Division 2 / sensor installed in the hazardous area: Zone 2; Class I, Division 2
- Standard cable to 500 digital transmitter $\rightarrow \implies 34$ Transmitter installed in the hazardous area: Zone 2; Class I, Division 2 / sensor installed in the hazardous area: Zone 1; Class I, Division 1
- Standard cable to remote display Transmitter 300 and remote display installed in the hazardous area: Zone 1; Class I, Division 1
- For applications with operation in Zone 1; Class 1, Division 1, we recommend the use of the compact version with the remote display. In this case, the display of the Proline 300 transmitter is a blind version without local operation.

A: Connecting cable between sensor and transmitter: Proline 500 – digital

Standard cable

A standard cable with the following specifications can be used as the connecting cable.

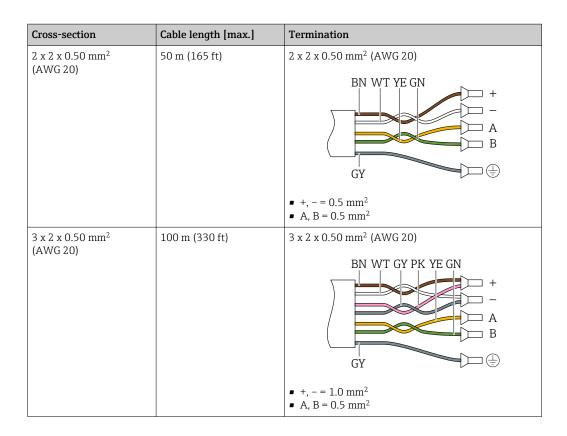
Design	4 cores (2 pairs); uninsulated stranded CU wires; pair-stranded with common shield
Shielding	Tin-plated copper-braid, optical cover \geq 85 %
Loop resistance	Power supply line (+, –): maximum 10Ω
Cable length	Maximum 300 m (1000 ft), see the following table.

Cross-section	Cable length [max.]
0.34 mm ² (AWG 22)	80 m (270 ft)
0.50 mm ² (AWG 20)	120 m (400 ft)
0.75 mm ² (AWG 18)	180 m (600 ft)
1.00 mm ² (AWG 17)	240 m (800 ft)
1.50 mm ² (AWG 15)	300 m (1000 ft)

Optionally available connecting cable

Design	$2 \times 2 \times 0.34~\text{mm}^2$ (AWG 22) PVC cable $^{1)}$ with common shield (2 pairs, uninsulated stranded CU wires; pair-stranded)
Flame resistance	According to DIN EN 60332-1-2
Oil-resistance	According to DIN EN 60811-2-1
Shielding	Tin-plated copper-braid, optical cover \geq 85 %
Operating temperature	When mounted in a fixed position: -50 to $+105$ °C (-58 to $+221$ °F); when cable can move freely: -25 to $+105$ °C (-13 to $+221$ °F)
Available cable length	Fixed: 20 m (65 ft); variable: up to maximum 50 m (164 ft)

1) UV radiation can impair the cable outer sheath. Protect the cable from direct sunshine where possible.


B: Connecting cable between sensor and transmitter: Proline 500 - digital

Standard cable

A standard cable with the following specifications can be used as the connecting cable.

Design	4, 6, 8 cores (2, 3, 4 pairs); uninsulated stranded CU wires; pair-stranded with common shield
Shielding	Tin-plated copper-braid, optical cover ≥ 85 %
Capacitance C	Maximum 760 nF IIC, maximum 4.2 μF IIB
Inductance L	Maximum 26 μH IIC, maximum 104 μH IIB
Inductance/resistance ratio (L/R)	Maximum 8.9 $\mu H/\Omega$ IIC, maximum 35.6 $\mu H/\Omega$ IIB (e.g. in accordance with IEC 60079-25)
Loop resistance	Power supply line (+, –): maximum 5 Ω
Cable length	Maximum 100 m (330 ft), see the following table.

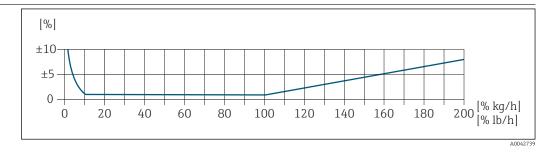
34

Optionally available connecting cable

Connecting cable for	Zone 1; Class I, Division 1
Standard cable	$2\times2\times0.5~\text{mm}^2$ (AWG 20) PVC cable $^{1)}$ with common shield (2 pairs, pair-stranded)
Flame resistance	According to DIN EN 60332-1-2
Oil-resistance	According to DIN EN 60811-2-1
Shielding	Tin-plated copper-braid, optical cover ≥ 85 %
Operating temperature	When mounted in a fixed position: -50 to $+105$ °C (-58 to $+221$ °F); when cable can move freely: -25 to $+105$ °C (-13 to $+221$ °F)
Available cable length	Fixed: 20 m (65 ft); variable: up to maximum 50 m (165 ft)

1) UV radiation can impair the cable outer sheath. Protect the cable from direct sunshine where possible.

Performance characteristics

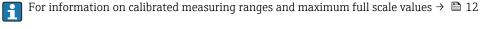

Reference operating conditions

- Error limits based on ISO 11631
- Dry air with +20 to +30 °C (+68 to +86 °F) at 0.8 to 1.5 bar (12 to 22 psi)
- Specifications as per calibration protocol
- Accuracy based on accredited calibration rigs that are traced to ISO 17025.

To obtain measured errors, use the *Applicator* sizing tool $\rightarrow \blacksquare 82$

Maximum measured error

Calibrated measuring range


The measuring accuracy is specified in relation to the mass flow and divided into two ranges:

- ± 1.0 % of the current measured value for 100% to 10% of the calibrated measuring range (under reference operating conditions)
- ±0.10 % of the calibrated full scale value for 10% to 1% of the calibrated measuring range (under reference operating conditions)

The measuring device is calibrated and adjusted on an accredited and traceable calibration rig and its accuracy is certified in a calibration report $^{1)}$ (5 control points).

Order code for "Calibration flow":

- Option G "Factory calibration": calibration report (5 control points)
- Option K "Traceable ISO/IEC17025": Swiss Calibration Services (SCS) calibration report (5 control points) which confirms traceability to the national calibration standard

Extended measuring range

The device has an extended measuring range that goes beyond the maximum calibrated value (100%). Here, the last measured values in the calibrated range are taken and then extrapolated. The end of the extrapolated range is only reached once the productive energy of the sensor is exceeded and/or the Mach number is greater than listed below.

Mach number	Order code
0.2	 Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel" Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"
0.4	 Order code for "Sensor version; sensor; insertion tube:", option SA "Unidirectional; stainless steel; stainless steel" Order code for "Sensor version; sensor; insertion tube:", option HA "Unidirectional; Alloy; stainless steel"

The accuracy is specified in relation to the mass flow.

 $\pm 1.0\% \pm (current measured value in \% -100\%) \times 0.07$ for 100% to 200% of the calibrated measuring range (under reference operating conditions)

36

¹⁾ Two calibration reports for the order code for "Sensor version; sensor; insertion tube.", option SB "Bidirectional; stainless steel; stainless steel"

Accuracy of outputs

The outputs have the following base accuracy specifications.

Current output

Accuracy	±5 uA
Trecuracy	pri

Pulse/frequency output

o.r. = of reading

Accuracy	1	Max. ±50 ppm o.r. (over the entire ambient temperature range)
----------	---	---

Repeatability ± 0.25 % of the display value for velocities above 1.0 m/s (3.3 ft/s)

Response time Typically < 3 s for 63 % of a step change (in both directions)

Influence of ambient temperature

Current output

Temperature coefficient	Max. 1 μA/°C

Pulse/frequency output

Temperature coefficient	No additional effect. Included in accuracy.	
Air: 0.02 % per °C (0.036 % temperature	0.02 % per °C (0.036 % per °F) of the process temperature change in relation to the reference	

Influence of medium pressure

Influence of medium temperature

Air: 0.3 % per bar (0.02 % per psi) of the process pressure change (from the set process pressure)

Installation

As a prerequisite for correct flow measurement, thermal measuring devices require a fully developed flow profile. For this reason, please pay attention to the following points and document sections when installing the device:

- Avoid flow disturbances, as the thermal measuring principle reacts sensitively to them.
- Give priority to dry gases.
- Take measures to avoid or remove condensation (e.g. condensation trap, thermal insulation etc.).

Orientation

The direction of flow must match the direction of the arrow on the sensor. In the case of the bidirectional sensor, the arrow points in the positive direction. When performing bidirectional measurement, the sensing element must be installed with an accuracy of 3°.

Orien	Recommendation	
Vertical orientation	A0015591	√ 1)
Horizontal orientation, transmitter head up	A0015589	✓
Horizontal orientation, transmitter head down	A0015590	✓ ²⁾
Horizontal orientation, transmitter head at side	A0015592	✓
Inclined orientation, transmitter head down	A0015773	√ ²⁾

- 1) In the case of saturated or impure gases, vertical orientation is preferred in order to minimize condensation or contamination. For bidirectional sensors, select horizontal orientation.
- 2) Select inclined orientation (α = approx. 135°) for very wet or water-saturated gas (e.g. digester gas, undried compressed air), or if deposits or condensate are constantly present.

Installation instructions

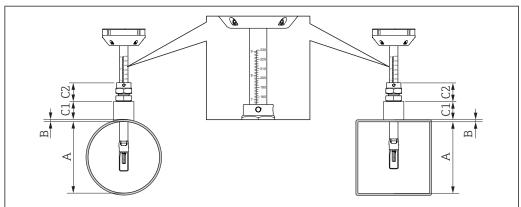
For mechanical reasons and to protect the pipe, support is recommended for heavy sensors (e.g. when installing a cold/hot tap).

Pipes

The measuring device must be professionally installed, and the following points must be observed:

- Weld pipes professionally.
- Use seals of the correct size.
- Align flanges and seals correctly.
- Remove protection cap from sensing element.
- Following installation, the pipe must be free from dirt and particles in order to avoid damage to the sensors.
- For further information → ISO standard 14511.

Insertion depth


The minimum length of the insertion version can be determined using the Endress+Hauser Applicator program or with the calculation formula below. The calculated necessary insertion depth must be within the adjusting range of the selected insertion version.

NOTICE

Metal clamping rings undergo plastic deformation during the initial installation.

As a result the insertion depth is fixed after initial installation and the clamping rings can no longer be replaced.

- ▶ Pay attention to information on preconditions and on determining the insertion depth.
- ► Check the insertion depth closely before tightening the clamping rings.

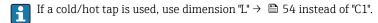
A0039548

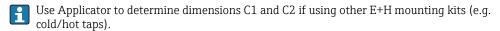
■ 13 Determine the dimensions A, B, C1 and C2

- A In the case of a circular pipe: the pipe internal diameter (DN); in the case of a duct: the inner dimension
- B Thickness of pipe wall or of duct wall
- C1 Mounting kit
- C2 Sensor pipe union

Calculating the insertion depth

Insertion depth = $(0.3 \cdot A) + B + (C1 + C2)$




The insertion depth must be at least 100mm.

Determining dimensions C1 and C2

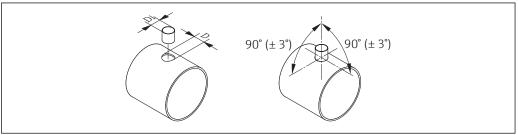
If only Endress+Hauser welding sockets are used

Welding socket 1" NPT	C1 + C2 = 112 mm (4.409 in)
Welding socket G1"	C1 + C2 = 106 mm (4.173 in)
Welding socket ¾" NPT	C1 + C2 = 108 mm (4.252 in)
Welding socket G¾"	C1 + C2 = 105 mm (4.134 in)

If not exclusively using Endress+Hauser welding sockets

C1	Length of pipe connection used
C2 (pipe union with 1" NPT thread)	52 mm (2.047 in)
C2 (pipe union with G1" thread)	46 mm (1.811 in)
C2 (pipe union with ³ / ₄ " NPT thread)	48 mm (1.889 in)
C2 (pipe union with G¾" thread)	45 mm (1.772 in)

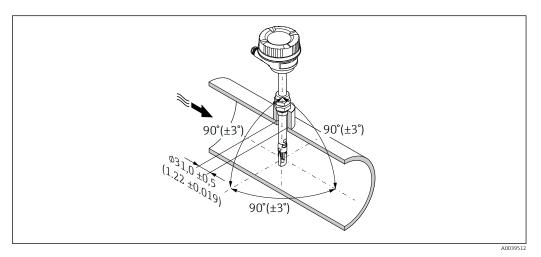
Selecting the length of the insertion version


Select the length of the insertion version using the calculated insertion depth and the following table. The insertion depth must be within the adjusting range of the insertion version.

Length of inse	ertion tube	Adjusting range (insertion depth)		
[mm] [in]		[mm]	[in]	
235	9	100 to 235	3.9 to 9.3	
335	13	100 to 335	3.9 to 13.2	
435	17	100 to 435	3.9 to 17.1	
608	24	100 to 608	3.9 to 23.9	

Installation conditions for nipples

Suitable support brackets must be used if installing in rectangular air ducts (or pipes with thin walls).

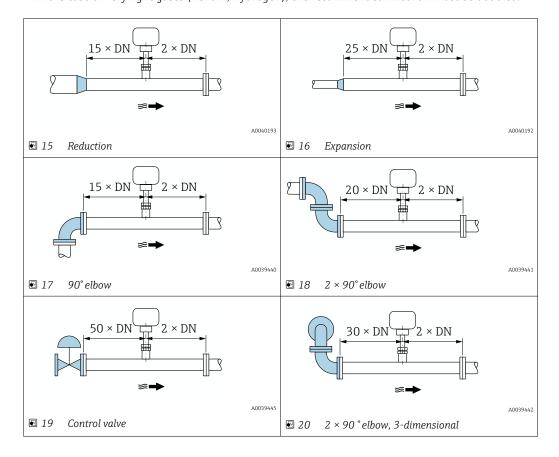

A00406

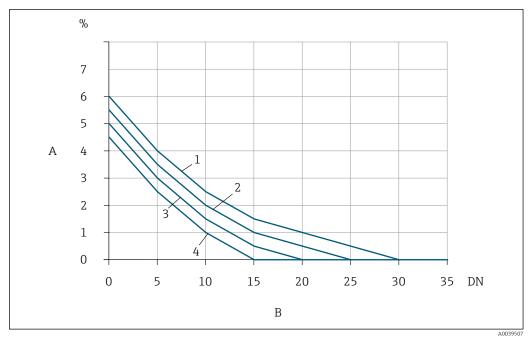
- $D = \emptyset 31.0 \pm 0.5 \text{ mm} (1.22 \pm 0.019 \text{ in})$
- Di $\emptyset 23.0 \pm 0.5 \text{ mm } (0.91 \pm 0.019 \text{ in})$

Aligning to the flow direction

The following criteria must be met for optimum flow measurement:

- The sensor is aligned at a 90° angle to the flow direction.
- The arrow engraved on the sensor shaft matches the positive flow direction.
- The scale on the sensor shaft is aligned with the pipe axis.


■ 14 Dimensions: mm (in)


Inlet and outlet runs

A fully developed flow profile is a prerequisite for optimum thermal flow measurement.

To achieve the best possible measuring performance, observe the following inlet and outlet runs at the very minimum.

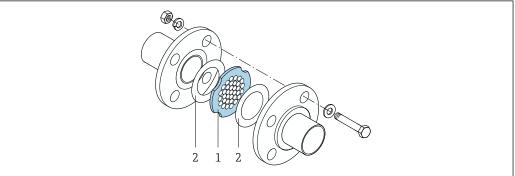
- In the case of bidirectional sensors, also observe the recommended inlet run in the opposite direction.
- If several flow disturbances are present, use flow conditioners.
- Use flow conditioners if it is not possible to observe the required inlet runs.
- In the case of control valves, the interference influence depends on the valve type and opening degree. The recommended inlet run for control valves is 50 × DN.
- In the case of very light gases (helium, hydrogen), the recommended inlet run must be doubled.

The additional measured error to be expected without flow conditioners depending on the type of interference and inlet run

- A Additional measured error (%)
- B Inlet run (DN)
- 1 2×90 ° elbow, 3-dimensional
- 2 Expansion
- 3 2 × 90° elbow
- 4 Reduction or 90° elbow

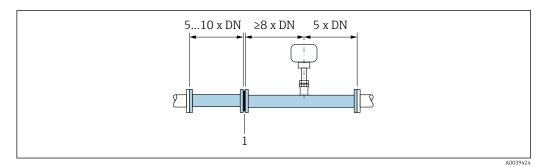
Flow conditioner

Use flow conditioners if it is not possible to observe the required inlet runs. Flow conditioners improve the flow profile and therefore reduce the necessary inlet runs.

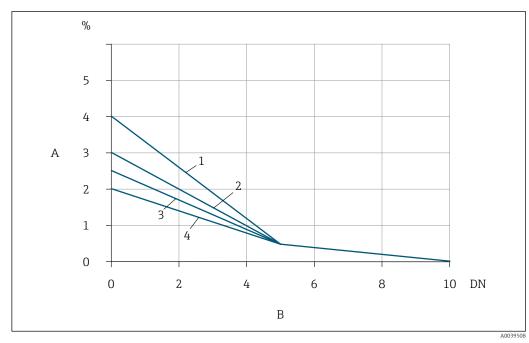

Mount the flow conditioner in flow direction in front of the measuring device.

Available in the following flange standards:

- ASME B16.5 Cl. 150/Cl. 300
- EN 1092-1 PN10/PN16/PN25/PN40
- JIS B2220 10K/20K


Available in the following line sizes:

- DN 80 (3")
- DN 100 (4")
- DN 150 (6")
- DN 200 (8")
- DN 250 (10")
- DN 300 (12")



A0039538

- 1 Flow conditioner
- 2 Seal

- $label{eq:linear_state}
 label{eq:linear_state_state}
 label{eq:linear_state_state}
 label{eq:linear_state_state_state_state}
 label{eq:linear_state$
- 1 Flow conditioner
- In the case of bidirectional sensors, also observe the inlet run in the opposite direction.

- \blacksquare 23 The additional measured error to be expected with flow conditioners depending on the type of interference and inlet run
- A Additional measured error (%)
- B Inlet runs (DN)
- 1 2 × 90 ° elbow, 3-dimensional
- 2 Expansion
- 3 2 × 90° elbow
- 4 Reduction or 90° elbow

The pressure loss for flow conditioners is calculated as follows: $\Delta~p~[mbar]$ = 0.0085 $\cdot~\rho~[kg/m^3] \cdot v^2~[m/s]$

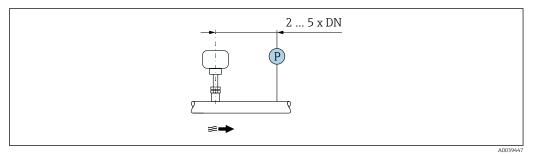
Example for air

p = 10 bar abs.

 $t=25~^{\circ}\text{C} \rightarrow \rho=11.71~\text{kg/m}^3$

v = 10 m/s

 $\Delta p = 0.0085 \cdot 11.71 \cdot 10^{2} = 9.95 \text{ mbar}$

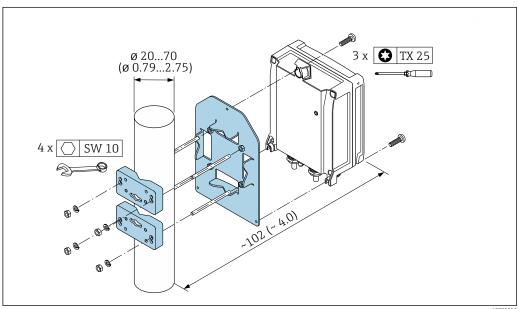

 $\boldsymbol{\rho}$: density of the process medium

v: average flow velocity

abs. = absolute

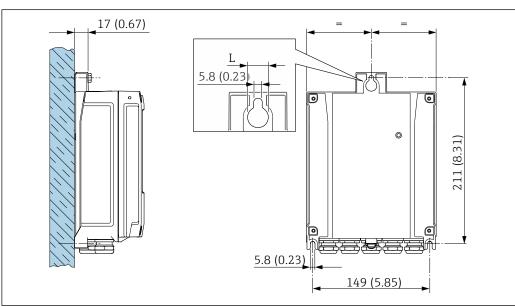
Outlet runs with pressure measuring points

Install the pressure measuring point downstream of the measuring system. This prevents the pressure transmitter from potentially affecting the flow in the measuring point.



 \blacksquare 24 Installation of a pressure measuring point (P = pressure transmitter)

Mounting the transmitter housing


Proline 500 - digital transmitter

Post mounting

■ 25 Engineering unit mm (in)

Wall mounting

■ 26 Engineering unit mm (in)

L Depends on order code for "Transmitter housing"

Order code for "Transmitter housing"

- Option **A**, aluminum coated: L = 14 mm (0.55 in)
- Option **D**, polycarbonate: L = 13 mm (0.51 in)

Endress+Hauser 45

A002905

A0029054

Environment

Ambient temperature range

Measuring device	 -40 to +60 °C (-40 to +140 °F) Order code for "Test, certificate", option JP: -50 to +60 °C (-58 to +140 °F)
Readability of the local display	-20 to +60 °C (-4 to +140 °F) The readability of the display may be impaired at temperatures outside the temperature range.

► If operating outdoors:

Avoid direct sunlight, particularly in warm climatic regions.

You can order a weather protection cover from Endress+Hauser→ 🖺 80.

Storage temperature

-50 to +80 °C (-58 to +176 °F), preferably at +20 °C (+68 °F)

Atmosphere

If a plastic transmitter housing is permanently exposed to certain steam and air mixtures, this can damage the housing.

In cases of doubt, please contact the Sales Center.

Degree of protection

Transmitter

- As standard: IP66/67, type 4X enclosure
- When housing is open: IP20, type 1 enclosure
- Display module: IP20, type 1 enclosure

Sensor

- As standard: IP66/67, type 4X enclosure
- With the order code for "Sensor option", IP68 can also be ordered:
 Option CC "IP68, Type 6P, cust-potted"

External WLAN antenna

IP67

Vibration- and shockresistance

Vibration sinusoidal, in accordance with IEC 60068-2-6

Sensor

- 2 to 8.4 Hz, 3.5 mm peak
- 8.4 to 2 000 Hz, 1 g peak

Transmitter

- 2 to 8.4 Hz, 7.5 mm peak
- 8.4 to 2 000 Hz, 2 g peak

Vibration broad-band random, according to IEC 60068-2-64

Sensoi

- 10 to 200 Hz, 0.003 g²/Hz
- 200 to 2000 Hz, 0.001 g²/Hz
- Total: 1.54 g rms

Transmitter

- 10 to 200 Hz, $0.01 \text{ g}^2/\text{Hz}$
- 200 to 2000 Hz, 0.003 g²/Hz
- Total: 2.70 g rms

Shock half-sine, according to IEC 60068-2-27

- Sensor
 - 6 ms 30 g
- Transmitter6 ms 50 g

Rough handling shocks according to IEC 60068-2-31

Interior cleaning

Suitable for cleaning-in-place (CIP) and sterilization-in-place (SIP).

Manufacturer options for delivery of parts

- Oil- and grease-free wetted parts, no declaration. Order code for "Service", option HA.
- Oil- and grease-free wetted parts as per IEC/TR 60877-2.0 and BOC 50000810-4, with declaration. Order code for "Service", option HB. The plant operator must ensure that the measuring device meets the requirements of the operator's oxygen application.

Electromagnetic compatibility (EMC)

As per IEC/EN 61326 and NAMUR Recommendation 21 (NE 21)

Details are provided in the Declaration of Conformity.

Process

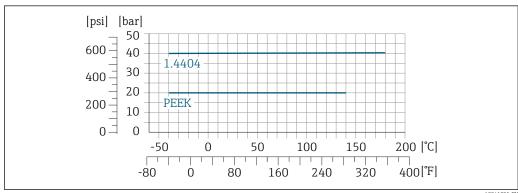
Medium temperature range

Sensor

-40 to +180 °C (-40 to +356 °F)

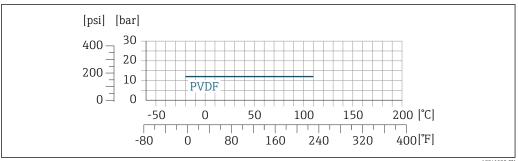
Seals

- Sealing rings:
 - EPDM -40 to +140 °C (-40 to +284 °F)
 - FKM -40 to +180 °C (-40 to +356 °F)
- Clamping ring:
 - PEEK -40 to +140 °C (-40 to +284 °F)
 - PVDF-20 to +110 °C (-4 to +230 °F)
 - 1.4404 -40 to +180 °C (-40 to +356 °F)
- Clamping ring in 1.4404: clamping ring has a fixed position on the shaft. Restriction for repeat calibrations (observe minimum insertion depth $\rightarrow \stackrel{\triangle}{=} 38$)


Medium pressure range

Minimum 0.5 bar absolute. Maximum permitted medium pressure $\rightarrow \triangleq 48$

Pressure-temperature ratings


The following pressure/temperature diagrams apply to all pressure-bearing parts of the device and not just the process connection. The diagrams show the maximum permissible medium pressure depending on the specific medium temperature.

Clamping ring

A0041035-EN

With fitting material 1.4404/F316L/F316

A0041590-EN

With fitting material 1.4404/F316L/F316 ■ 28

Flow limit

Measuring range \rightarrow \blacksquare 12

The maximum flow depends on the gas type and the pipe nominal diameter used. The end of the measuring range is reached when the Mach number listed below is reached.

Mach number	Order code
0.2	 Order code for "Sensor version; sensor; insertion tube:", option SB "Bidirectional; stainless steel; stainless steel" Order code for "Sensor version; sensor; insertion tube:", option SC "Reverse flow detection; stainless steel; stainless steel"
0.4	 Order code for "Sensor version; sensor; insertion tube:", option SA "Unidirectional; stainless steel; stainless steel" Order code for "Sensor version; sensor; insertion tube:", option HA "Unidirectional; Alloy; stainless steel"

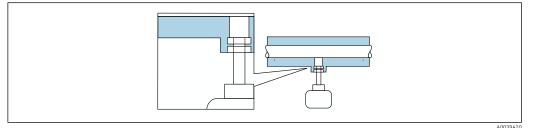
Use the A

Use the Applicator to size the device.

Pressure loss

Use the Applicator for precise calculations.

Thermal insulation


In the case of some fluids, it is important to keep the heat radiated from the sensor to the transmitter to a low level. A wide range of materials can be used for the required insulation.

If the gas is very wet or saturated with water (e.g. digester gas), the pipe and the sensor housing should be insulated, and heated where necessary, to prevent water droplets condensing on the sensing element.

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, sensor connection housing pointing downwards.
- Do not insulate the sensor connection housing.
- ▶ Maximum permissible temperature at the lower end of the sensor connection housing: $80 \,^{\circ}\text{C} (176 \,^{\circ}\text{F})$
- ► Thermal insulation with extended neck free: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

■ 29 Thermal insulation with extended neck free

Heating

Some fluids require suitable measures to avoid loss of heat at the sensor.

Heating options

- Electrical heating, e.g. with electric band heaters
- Via pipes carrying hot water or steam

NOTICE

Electronics overheating on account of thermal insulation!

- Recommended orientation: horizontal orientation, sensor connection housing pointing downwards
- ▶ Do not insulate the sensor connection housing.
- \blacktriangleright Maximum permissible temperature at the lower end of the sensor connection housing: 80 °C (176 °F)
- ► Thermal insulation with extended neck free: We recommend that you do not insulate the extended neck in order to ensure optimum dissipation of heat.

NOTICE

Danger of overheating when heating

- ► Ensure that the temperature at the lower end of the transmitter housing does not exceed 80 °C (176 °F).
- ► Ensure that sufficient convection takes place at the transmitter neck.
- ► When using in potentially explosive atmospheres, observe the information in the device-specific Ex documentation. For detailed information on the temperature tables, see the separate document entitled "Safety Instructions" (XA) for the device.
- Ensure that a sufficiently large area of the transmitter neck remains exposed. The uncovered part serves as a radiator and protects the electronics from overheating and excessive cooling.

Hot tap, process pressure

Only use the hot tap for mounting and removal at process pressure for non-toxic, innocuous gases.

Medium pressure version

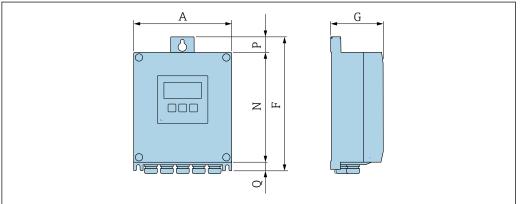
- Max. process pressure: 20 bar (290 psi)
- Max. extraction pressure: 16 bar (230 psi)
- Max. extraction temperature: +50 °C (+122 °F)
- Min. insertion sensor length: 435mm (17")

Low pressure version

- Max. process pressure: 20 bar (290 psi)
- Max. extraction pressure: 4.5 bar (65 psi)
- Max. extraction temperature: +50 °C (+122 °F)
- Min. insertion sensor length: 335mm (13")

Cold tap, ambient pressure

Cold tap for mounting and removal at ambient pressure.


- Max. process pressure: 20 bar (290 psi)
- Max. extraction pressure: 1 bar (14.5 psi)
- Max. extraction temperature: +50 °C (+122 °F)
- Min. insertion sensor length: 335mm (13")

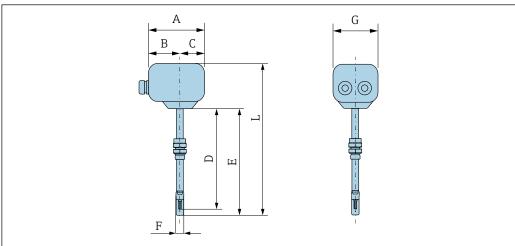
Mechanical construction

Dimensions in SI units

Housing of Proline 500 - digital transmitter

Non-hazardous area or hazardous area: Zone 2; Class I, Division 2

Δ0033789


Order code for "Transmitter housing", option A "Aluminum, coated" and order code for "Integrated ISEM electronics", option A "Sensor"

A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
167	232	89	187	24	

 $\label{lem:code} \textit{Order code for "Transmitter housing", option D "Polycarbonate" and order code for "Integrated ISEM electronics", option A "Sensor"$

A	F	G	N	P	Q
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
177	234	89	197	17	

Sensor connection housing

A004107

Order code for "Sensor connection housing", option A "Aluminum, coated"

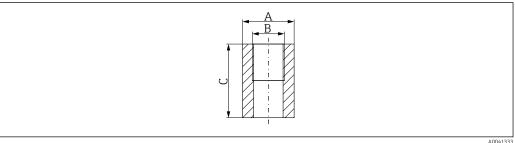
A 1)	B 1)	С	G
[mm]	[mm]	[mm]	[mm]
148	94	54	136

1) Depending on the cable gland used: values up to +30 mm

Order code for "Sensor connection housing", option L "Cast, stainless"

A 1)	В	С	G
[mm]	[mm]	[mm]	[mm]
145	86	59	136

1) Depending on the cable gland used: values up to +30 mm

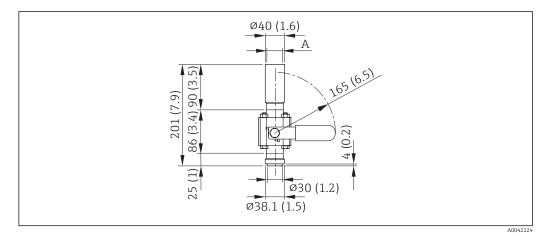

Order code for "Sensor connection housing", option A "Aluminum, coated"

Installed length	D	Е	F	L 1)
[mm]	[mm]	[mm]	[mm]	[mm]
235	281	298	22.4	408
335	381	398	22.4	508
435	481	498	22.4	608
608	652	669	22.4	779

With order code for "Sensor connection housing", option L "Cast, stainless" + 24 mm

Accessories

Welding socket


- Order code for "Accessory enclosed", option "Welding socket" В

Order code for "Accessory enclosed":

- Option PC "Welding socket G 1""
- Option PD "Welding socket 1" NPT"
- Option PE "Welding socket G ¾"
- Option PF "Welding socket ¾" NPT"

52

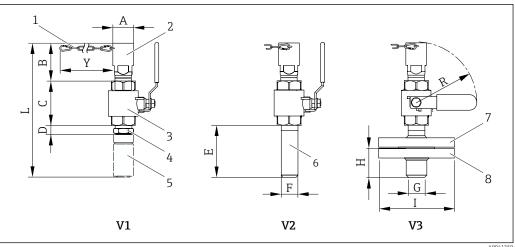
Cold tap, ambient pressure

■ 30 Dimensions: mm (in)

A Order code for "Accessory enclosed", option "Welding socket"

Order code for "Accessory enclosed":

- Option PR "Cold tap G 1", ambient pressure"
- Option PS "Cold tap 1" NPT, ambient pressure"
- Option PT "Cold tap G ¾", ambient pressure"
- Option PU "Cold tap ¾" NPT, ambient pressure"


Hot tap, process pressure

Low-pressure version

Available for order as:

- Order code for "Accessory enclosed"
 - Option PG "Hot tap G 1", low pressure = 4.5 bar/65 psig"
 - Option PH "Hot tap 1" NPT, low pressure = 4.5 bar/65 psig"
 - Option PK "Hot tap G 3/4", low pressure = 4.5 bar/65 psig"
 - Option PL "Hot tap ¾" NPT, low pressure = 4.5 bar/65 psig"
 - The low-pressure version as "Accessory enclosed" comprises: $V2 \rightarrow \blacksquare 31$, $\blacksquare 54$
- Can be ordered separately as an "Accessory": DK6003 → 81
 Versions V1, V2 and V3 can be ordered via DK6003
- A
- Can only be used with the following installed lengths:
 - Order code for "Installed length", option L2 "335mm (13")"
 - Order code for "Installed length", option L3 "435mm (17")"
 - Order code for "Installed length", option L4 "608mm (24")"
- Cannot be used with 1.4404 clamping ring. Maximum temperature is limited (140°C for PEEK and 110°C for PVDF)

Versions available for order

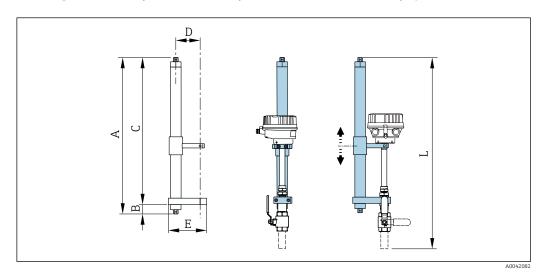
- 1 Safety chain for low-pressure version
- 2 Sensor connection
- Ball valve 3
- 4 Retrofit adapter (for subsequent installation with existing welding socket (DK6MB))
- Welding socket (DK6MB) only G1" / 1" NPT
- 6 Process connection welding socket
- Flange adapter
- Process connection flange 8
- V1 Version with retrofit adapter
- V2Version with welding socket
- Version with flange

A	B	C	D	E	F	G	H	I	L	R	Y ¹⁾
[mm]	[mm]	[mm]	[mm]								
42.4	~85	88	~60	123	33.4	33.4	54	123.9	~252.5	165	

1) Safety chain (for $p \le 4.5$ bar) only in conjunction with low-pressure version

Weight [kg]				
V1	V2	V3		
2.8	2.4	4.9		

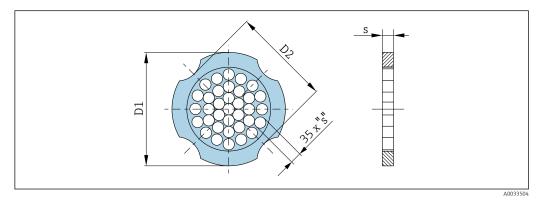
Medium-pressure version


Available for order as:

- Order code for "Accessory enclosed"
 - Option PI "Hot tap G 1", medium pressure = 16 bar/230 psig"
 - Option PJ "Hot tap 1" NPT, medium pressure = 16 bar/230 psig"
 - Option PM "Hot tap G ¾", medium pressure = 16 bar/230 psig"
 - Option PN "Hot tap ¾" NPT, medium pressure = 16 bar/230 psig"
- The medium-pressure version comprises: $V2 \rightarrow \square 31$, $\square 54$ and extractor assembly ■ Can be ordered separately as an "Accessory": DK6003 → 🖺 81
- Versions V1, V2 and V3 \rightarrow 31, 54 can be ordered via DK6003
- Can only be used with the following installed lengths:
 - Order code for "Installed length", option L3 "435mm (17")"
 - Order code for "Installed length", option L4 "608mm (24")"
 - Cannot be used with 1.4404 clamping ring. Maximum temperature is limited (140°C for PEEK and 110°C for PVDF)

Extractor assembly for medium-pressure version

Order code for "Accessory enclosed":


- Option PI "Hot tap G 1", medium pressure maximum 16 bar/230 psig"
- Option PJ "Hot tap 1" NPT, medium pressure maximum 16 bar/230 psig"
- Option PM "Hot tap G ¾", medium pressure maximum 16 bar/230 psig"
 Option PN "Hot tap ¾" NPT, medium pressure maximum 16 bar/230 psig"

■ 32 Extractor assembly

L	A	B	C	D	E	Weight
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
930	740	40	700	120	180	

Flow conditioner

Used in combination with flanges according to DIN EN 1092-1: PN 10 1.4404 (316, 316L)

can be ordered separately as an Accessory . Divoto4					
DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]		
80	145.3	D2	10.1		
100	165.3	D2	13.3		
150	221.0	D2	20.0		
200	274.0	D1	26.3		

Used in combination with flanges according to DIN EN 1092-1: PN 10 1.4404 (316, 316L)

Can be ordered separately as an "Accessory": DK6004

DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
250	330.0	D2	33.0
300	380.0	D2	39.6

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 16 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004 DN Centering diameter D1 1 / D2

DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
80	145.3	D2	10.1
100	165.3	D2	13.3
150	221.0	D2	20.0
200	274.0	D2	26.3
250	330.0	D2	33.0
300	380.0	D2	39.6

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 25 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004

DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
80	145.3	D2	10.1
100	171.3	D1	13.3
150	227.0	D2	20.0
200	280.0	D1	26.3
250	340.0	D1	33.0
300	404.0	D1	39.6

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to DIN EN 1092-1: PN 40
1.4404 (316, 316L)

Can be ordered separately as an "Accessory": DK6004

DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
80	145.3	D2	10.1
100	171.3	D1	13.3
150	227.0	D2	20.0
200	294.0	D2	26.3

Used in combination with flanges according to DIN EN 1092-1: PN 40 1.4404 (316, 316L)

Can be ordered separately as an "Accessory": DK6004

DN [mm]	Centering diameter [mm]	D1 ¹⁾ / D2 ²⁾	s [mm]
250	355.0	D2	33.0
300	420.0	D1	39.6

- The flow conditioner is fitted at the outer diameter between the bolts. 1)
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to ASME B16.5: Class 150 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004

DN [mm]	3		s [mm]
80	138.4	D1	10.1
100	176.5	D2	13.3
150	150 223.5 D1 200 274.0 D2		20.0
200			26.3
250	340.0	D1	33.0
300	404.0	D1	39.6

- The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to ASME B16.5: Class 300 1.4404 (316, 316L)

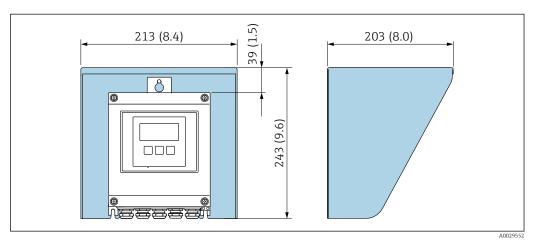
Can be ordered separately as an "Accessory": DK6004

can be of acted separately as an Accessory . Discoor				
DN [mm]	3		s [mm]	
80	151.3	D1	10.1	
100	100 182.6 D1		13.3	
150			20.0	
200			26.3	
250	363.0	D1	33.0	
300	402.0	D1	39.6	

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

ı	Used in combination with flanges according to JIS B2220: 10K
	1.4404 (316, 316L)

Can be ordered separately as an "Accessory": DK6004				
DN [mm]	3		s [mm]	
80	136.3	D2	10.1	
100	161.3	D2	13.3	
150	221.0	D2	20.0	
200	271.0	D2	26.3	

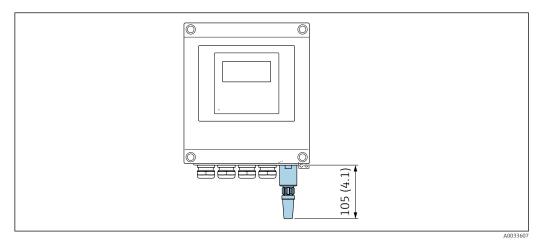

Used in combination with flanges according to JIS B2220: 10K 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004					
DN Centering diameter D1 1) / D2 2) s [mm] [mm]					
250	330.0	D2	33.0		
300	380.0	D2	39.6		

- 1) 2) The flow conditioner is fitted at the outer diameter between the bolts.
- The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to JIS B2220: 20K 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004				
DN Centering diameter D1 ¹⁾ / D2 ²⁾ [mm]				
80	142.3	D1	10.1	
100	167.3	D1	13.3	
150	150 240.0		20.0	
200	284.0	D1	26.3	
250	355.0	D2	33.0	
300	404.0	D1	39.6	

- The flow conditioner is fitted at the outer diameter between the bolts. 1)
- 2) The flow conditioner is fitted at the indentations between the bolts.

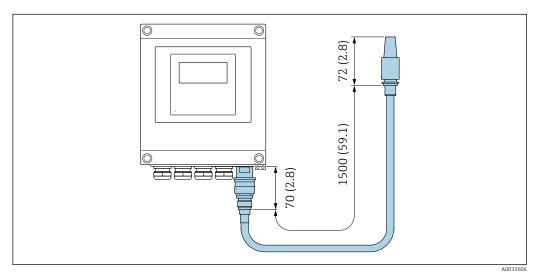
Protective cover



33 Protective cover for Proline 500 – digital; engineering unit mm (in)

External WLAN antenna

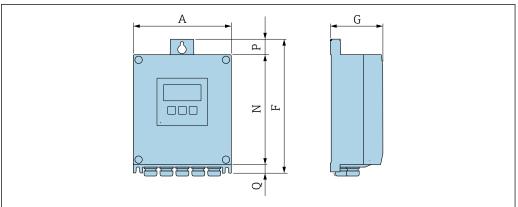
Proline 500 - digital


External WLAN antenna mounted on device

■ 34 Engineering unit mm (in)

External WLAN antenna mounted with cable

The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.



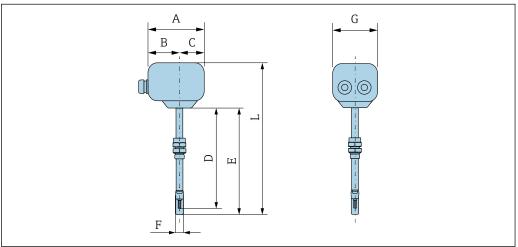
■ 35 Engineering unit mm (in)

Dimensions in US units

Housing of Proline 500 – digital transmitter

Non-hazardous area or hazardous area: Zone 2; Class I, Division 2 $\,$

A0033789


 ${\it Order\ code\ for\ "Transmitter\ housing",\ option\ A\ "Aluminum,\ coated"\ and\ order\ code\ for\ "Integrated\ ISEM\ electronics",\ option\ A\ "Sensor"$

A [in]	F [in]	G [in]	N [in]	P [in]	Q [in]	
6.57	9.13	3.50	7.36	0.94	0.83	

 $\label{lem:code_for_policy} \textit{Order code for "Transmitter housing", option D "Polycarbonate" and order code for "Integrated ISEM electronics", option A "Sensor"$

A	F	G	N	P	Q
[in]	[in]	[in]	[in]	[in]	[in]
6.97	9.21	3.50	7.76	0.67	

Sensor connection housing

A0041077

Order code for "Sensor connection housing", option A "Aluminum, coated"

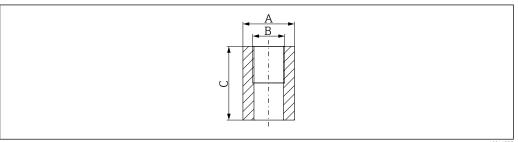
A 1)	B 1)	С	G
[in]	[in]	[in]	[in]
5.83	3.70	2.13	5.35

1) Depending on the cable gland used: values up to \pm 1.18 in

Order code for "Sensor connection housing", option L "Cast, stainless"

A 1)	В С		G
[in]	[in]	[in]	[in]
5.71	3.39	2.32	5.35

1) Depending on the cable gland used: values up to + 1.18 in

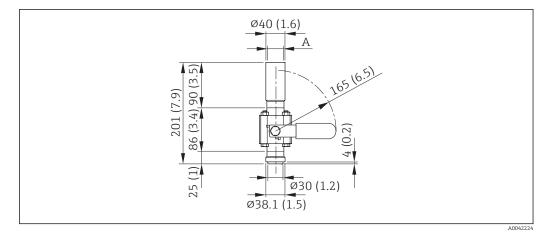

Order code for "Sensor connection housing", option A "Aluminum, coated"

Installed length	D	Е	F	L 1)
[in]	[in]	[in]	[in]	[in]
9	11.06	11.73	0.88	16.06
13	15	15.67	0.88	20
17	18.94	19.61	0.88	23.94
24	25.67	26.34	0.88	30.67

1) With order code for "Sensor connection housing", option L "Cast, stainless" \pm 0.94 in

Accessories

Welding socket


A00413

- A 1.77 in
- B Order code for "Accessory enclosed", option "Welding socket"
- C 2.36 in

Order code for "Accessory enclosed":

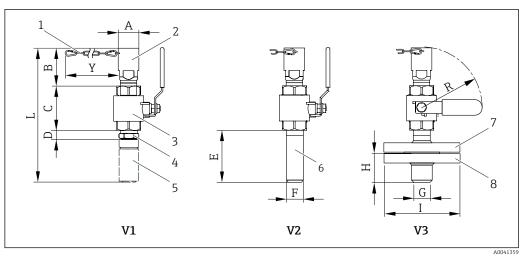
- Option PC "Welding socket G 1"
- Option PD "Welding socket 1" NPT"
- Option PE "Welding socket G ¾"
- Option PF "Welding socket ¾" NPT"

Cold tap, ambient pressure

■ 36 Dimensions: mm (in)

A Order code for "Accessory enclosed", option "Welding socket"

Order code for "Accessory enclosed":


- Option PR "Cold tap G 1", ambient pressure"
- Option PS "Cold tap 1" NPT, ambient pressure"
- Option PT "Cold tap G ¾", ambient pressure"
- Option PU "Cold tap ¾" NPT, ambient pressure"

Hot tap, process pressure

Low-pressure version

- Available for order as:
 - \blacksquare Order code for "Accessory enclosed"
 - Option PG "Hot tap G 1", low pressure = 4.5 bar/65 psig"
 - Option PH "Hot tap 1" NPT, low pressure = 4.5 bar/65 psig"
 - Option PK "Hot tap G ¾", low pressure = 4.5 bar/65 psig"
 - Option PL "Hot tap ¾" NPT, low pressure = 4.5 bar/65 psig"
 - The low-pressure version as "Accessory enclosed" comprises: $V2 \rightarrow \blacksquare 37$, $\blacksquare 63$
 - Can be ordered separately as an "Accessory": DK6003 → 1 81
 Versions V1, V2 and V3 can be ordered via DK6003
- Can only be used with the following installed lengths:
 - Order code for "Installed length", option L2 "335mm (13")"
 - Order code for "Installed length", option L3 "435mm (17")"
 - Order code for "Installed length", option L4 "608mm (24")"
 - Cannot be used with 1.4404 clamping ring. Maximum temperature is limited (284°F for PEEK and 230°F for PVDF)

62

37 Versions available for order

- 1 Safety chain for low-pressure version
- 2 Sensor connection
- 3 Ball valve
- 4 Retrofit adapter (for subsequent installation with existing welding socket (DK6MB))
- 5 Welding socket (DK6MB) only G1" / 1" NPT
- 6 Process connection welding socket
- 7 Flange adapter
- 8 Process connection flange
- V1 Version with retrofit adapter
- V2 Version with welding socket
- V3 Version with flange

A [in]	B [in]	C [in]	D [in]	E [in]	F [in]	_	H [in]	I [in]	L [in]	R [in]	Y ¹⁾ [in]
1.67	~3.35	3.46	~2.36	4.84	1.31	1.31	2.13	4.88	~9.94	6.50	24.41

1) Safety chain (for $p \le 65$ psi g) only in conjunction with low-pressure version

Weight [lbs]					
V1	V2	V3			
6	5	11			

Medium-pressure version

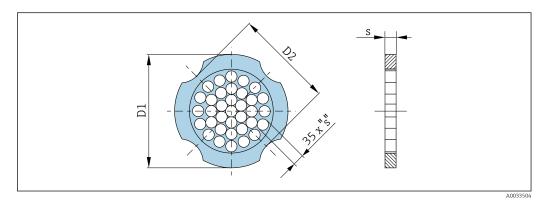
Available for order as:

- \blacksquare Order code for "Accessory enclosed"
 - Option PI "Hot tap G 1", medium pressure = 16 bar/230 psig"
 - Option PJ "Hot tap 1" NPT, medium pressure = 16 bar/230 psig"
 - Option PM "Hot tap G ¾", medium pressure = 16 bar/230 psig"
 - Option PN "Hot tap ¾" NPT, medium pressure = 16 bar/230 psig"
 - The medium-pressure version comprises: V2 \rightarrow \blacksquare 37, \triangleq 63 and extractor assembly \rightarrow \blacksquare 38, \triangleq 64

- Can only be used with the following installed lengths:
 - Order code for "Installed length", option L3 "435mm (17")"
 - Order code for "Installed length", option L4 "608mm (24")"
- Cannot be used with 1.4404 clamping ring. Maximum temperature is limited (140°C for PEEK and 110°C for PVDF)

Extractor assembly for medium-pressure version

- Order code for "Accessory enclosed":


 - Option PI "Hot tap G 1", medium pressure maximum 16 bar/230 psig"
 Option PJ "Hot tap 1" NPT, medium pressure maximum 16 bar/230 psig"
 - Option PM "Hot tap G ¾", medium pressure maximum 16 bar/230 psig"
 - Option PN "Hot tap ¾" NPT, medium pressure maximum 16 bar/230 psig"

■ 38 Extractor assembly

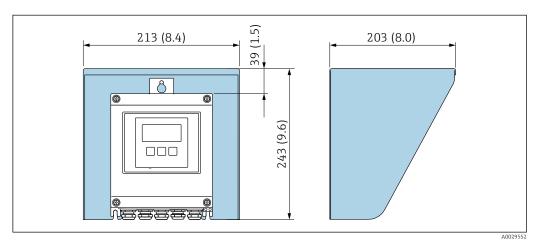
L	A	B	C	D	E	Weight
[in]	[in]	[in]	[in]	[in]	[in]	[lbs]
36.61	29.13	1.57	27.56	4.72	7.09	

Flow conditioner

Used in combination with flanges according to ASME B16.5: Class 150 1.4404 (316, 316L)

Can be ordered separately as an "Accessory": DK6004

can be ordered separately as an indeessory. Shoot				
DN [in]	Centering diameter [in]	D1 ¹⁾ / D2 ²⁾	s [in]	
3	5.45	D1	0.40	
4	6.95	D2	0.52	
6	8.81	D1	0.79	
8	10.80	D2	1.04	

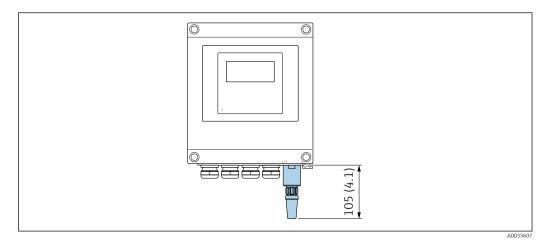

Used in combination with flanges according to ASME B16.5: Class 150 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004				
DN [in]	Centering diameter [in]	D1 ¹⁾ / D2 ²⁾	s [in]	
10	13.40	D1	1.30	
12	15.90	D1	1.56	

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

Used in combination with flanges according to ASME B16.5: Class 300 1.4404 (316, 316L) Can be ordered separately as an "Accessory": DK6004					
DN [in]	Centering diameter [in]	D1 ¹⁾ / D2 ²⁾	s [in]		
3	5.96	D1	0.40		
4	7.19	D1	0.52		
6	9.92	D1	0.79		
8	12.20	D1	1.04		
10	14.30	D1	1.30		
12	15.80	D1	1.56		

- 1) The flow conditioner is fitted at the outer diameter between the bolts.
- 2) The flow conditioner is fitted at the indentations between the bolts.

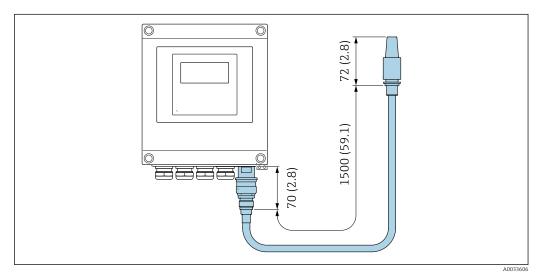
Protective cover



39 Protective cover for Proline 500 – digital; engineering unit mm (in)

External WLAN antenna

Proline 500 – digital


External WLAN antenna mounted on device

■ 40 Engineering unit mm (in)

External WLAN antenna mounted with cable

The external WLAN antenna can be mounted separately from the transmitter if the transmission/reception conditions at the transmitter mounting location are poor.

■ 41 Engineering unit mm (in)

Materials

Transmitter housing

Housing of Proline 500 – digital transmitter

Order code for "Transmitter housing":

- Option **A** "Aluminum coated": aluminum, AlSi10Mg, coated
- Option **D** "Polycarbonate": polycarbonate

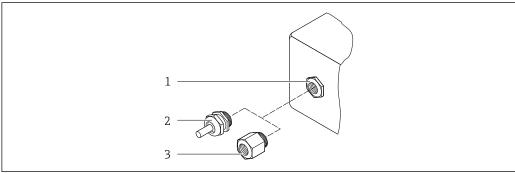
Window material

Order code for "Transmitter housing":

- Option **A** "Aluminum, coated": glass
- Option **D** "Polycarbonate": plastic

Fastening components for mounting on a post

- Screws, threaded bolts, washers, nuts: stainless A2 (chrome-nickel steel)
- Metal plates: stainless steel, 1.4301 (304)


66

Sensor connection housing

Order code for "Sensor connection housing":

- Option A "Aluminum coated": aluminum, AlSi10Mg, coated
- Option L "Cast, stainless": 1.4409 (CF3M) similar to 316L

Cable entries/cable glands

A0020640

 \blacksquare 42 Possible cable entries/cable glands

- 1 Female thread $M20 \times 1.5$
- 2 Cable gland $M20 \times 1.5$
- 3 Adapter for cable entry with female thread G $\frac{1}{2}$ " or NPT $\frac{1}{2}$ "

Cable entries and adapters	Material
Cable gland M20 × 1.5	Plastic
 Adapter for cable entry with female thread G ½" Adapter for cable entry with female thread NPT ½" 	Nickel-plated brass
Only available for certain device versions: Order code for "Transmitter housing": Option A "Aluminum, coated" Option D "Polycarbonate" Order code for "Sensor connection housing": Proline 500 – digital: Option A "Aluminum coated" Option B "Stainless"	

Materials for insertion tube

Stainless steel, 1.4404 (316/316L)

Process connections, process coupling

Stainless steel, 1.4404 (316/316L)

Sensing element

Unidirectional

- Stainless steel, 1.4404 (316/316L)
- Alloy C22, 2.4602 (UNS N06022);

Bidirectional

Stainless steel, 1.4404 (316/316L)

Reverse flow detection

Stainless steel, 1.4404 (316/316L)

Clamping rings

- PEEK
- PVDF
- 1.4404 (316/316L)

Flat ring seal

- EPDM
- FKM

For aggressive media (e.g. chlorine or ozone), we recommend special materials (Alloy for sensing element, PVDF or 1.4404 for clamping rings and FKM for flat seal). For any requests, please contact the Endress+Hauser sales organization responsible for your area.

Accessories

Protective cover

Stainless steel, 1.4404 (316L)

External WLAN antenna

- Antenna: ASA plastic (acrylic ester-styrene-acrylonitrile) and nickel-plated brass
- Adapter: Stainless steel and nickel-plated brass
- Cable: Polyethylene
- Plug: Nickel-plated brass
- Angle bracket: Stainless steel

Weight

Transmitter

- Proline 500 digital polycarbonate: 1.4 kg (3.1 lbs)
- Proline 500 digital aluminum: 2.4 kg (5.3 lbs)

Sensor

- Sensor with aluminum connection housing version: see the information in the following table
- Sensor with cast connection housing version, stainless: +3.7 kg (+8.2 lbs)

Weight in SI units

Installed length [mm]	Weight [kg]
235	2.2
335	2.3
435	2.4
608	2.5

Weight in US units

Installed length [in]	Weight [lbs]
9	4.9
13	5.1
17	5.3
24	5.5

Process connections

- G¾", ISO 228/1 compression fitting
- ullet G1", ISO 228/1, compression fitting
- ¾" NPT, compression fitting
- 1" NPT, compression fitting
- For information on the different materials used in the process connections $\rightarrow \stackrel{ riangle}{=} 67$

Human interface

Operating concept

Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnostics
- Expert level

Fast and safe commissioning

- Guided menus ("Make-it-run" wizards) for applications
- Menu quidance with brief descriptions of the individual parameter functions
- Access to the device via Web server → 🖺 82
- WLAN access to the device via mobile handheld terminal, tablet or smart phone

Reliable operation

- Operation in local language → 🖺 69
- Uniform operating philosophy applied to device and operating tools
- If replacing electronic modules, transfer the device configuration via the integrated memory (HistoROM backup) which contains the process and measuring device data and the event logbook. No need to reconfigure.

Efficient diagnostics increase measurement availability

- Troubleshooting measures can be called up via the device and in the operating tools
- Diverse simulation options, logbook for events that occur and optional line recorder functions

Languages

Can be operated in the following languages:

- Via local operation
- English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Korean, Bahasa (Indonesian), Vietnamese, Czech, Swedish
- Via Web browser
- English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Chinese, Japanese, Korean, Bahasa (Indonesian), Vietnamese, Czech, Swedish
- Via "FieldCare", "DeviceCare" operating tool: English, German, French, Spanish, Italian, Chinese, Japanese

Local operation

Via display module

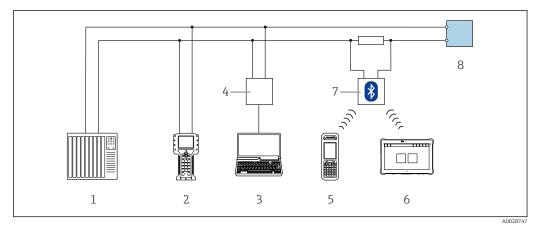
Equipment:

- Order code for "Display; operation", option F "4-line, illuminated, graphic display; touch control"
- Order code for "Display; operation", option G "4-line, illuminated, graphic display; touch control + W/I A N"
- i

Information about WLAN interface → 🗎 71

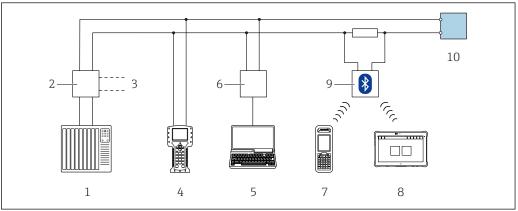
Display elements

- 4-line, illuminated, graphic display
- White background lighting; switches to red in event of device errors
- Format for displaying measured variables and status variables can be individually configured
- Permitted ambient temperature for the display: −20 to +60 °C (−4 to +140 °F)
 The readability of the display may be impaired at temperatures outside the temperature range.


Operating elements

- External operation via touch control (3 optical keys) without opening the housing: ∃, □, □
- Operating elements also accessible in the various zones of the hazardous area

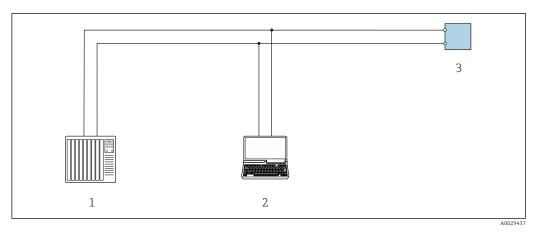
Remote operation


Via HART protocol

This communication interface is available in device versions with a HART output.

■ 43 Options for remote operation via HART protocol (active)

- 1 Control system (e.g. PLC)
- 2 Field Communicator 475
- 3 Computer with Web browser (e.g. Internet Explorer) for access to the integrated device Web server or computer with an operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX350 or SFX370
- 6 Field Xpert SMT70
- 7 VIATOR Bluetooth modem with connecting cable
- 8 Transmitter

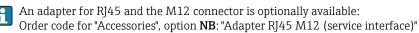

A00287

■ 44 Options for remote operation via HART protocol (passive)

- 1 Control system (e.g. PLC)
- 2 Transmitter power supply unit, e.g. RN221N (with communication resistor)
- 3 Connection for Commubox FXA195 and Field Communicator 475
- 4 Field Communicator 475
- 5 Computer with Web browser (e.g. Internet Explorer) for access to the integrated device Web server or computer with an operating tool (e.g. FieldCare, DeviceCare, AMS Device Manager, SIMATIC PDM) with COM DTM "CDI Communication TCP/IP"
- 6 Commubox FXA 195 (USB)
- 7 Field Xpert SFX350 or SFX370
- 8 Field Xpert SMT70
- 9 VIATOR Bluetooth modem with connecting cable
- 10 Transmitter

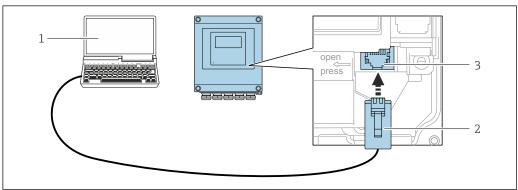
Via Modbus RS485 protocol

This communication interface is available in device versions with a Modbus-RS485 output.


■ 45 Options for remote operation via Modbus-RS485 protocol (active)

- 1 Control system (e.g. PLC)
- Computer with Web browser (e.g. Internet Explorer) for accessing the integrated device Web server or with operating tool (e.g. FieldCare, DeviceCare) with COM DTM "CDI Communication TCP/IP" or Modbus DTM
- 3 Transmitter

Service interface


Via service interface (CDI-RJ45)

A point-to-point connection can be established to configure the device onsite. With the housing open, the connection is established directly via the service interface (CDI-RJ45) of the device.

The adapter connects the service interface (CDI-RJ45) to an M12 connector mounted in the cable entry. Therefore the connection to the service interface can be established via an M12 connector without opening the device.

Proline 500 – digital transmitter

A002916

■ 46 Connection via service interface (CDI-RJ45)

- Computer with Web browser (e.g. Microsoft Internet Explorer, Microsoft Edge) for accessing the integrated device Web server or with "FieldCare", "DeviceCare" operating tool with COM DTM "CDI Communication TCP/IP" or Modbus DTM
- 2 Standard Ethernet connecting cable with RJ45 connector
- 3 Service interface (CDI-RJ45) of the measuring device with access to the integrated Web server

Via WLAN interface

The optional WLAN interface is available on the following device version: Order code for "Display; operation", option G "4-line, illuminated; touch control + WLAN"

	Function	WLAN: IEEE 802.11 b/g (2.4 GHz) • Access point with DHCP server (default setting) • Network
Encryption		WPA2-PSK AES-128 (in accordance with IEEE 802.11i)

Configurable WLAN channels	1 to 11		
Degree of protection	IP67		
Available antennas	 Internal antenna External antenna (optional) In the event of poor transmission/reception conditions at the place of installation. Available as an accessory → ■ 80. Only one antenna active in each case! 		
Range	 Internal antenna: typically 10 m (32 ft) External antenna: typically 50 m (164 ft) 		
Materials (external antenna)	 Antenna: ASA plastic (acrylic ester-styrene-acrylonitrile) and nickel-plated brass Adapter: Stainless steel and nickel-plated brass Cable: Polyethylene Connector: Nickel-plated brass Angle bracket: Stainless steel 		

Supported operating tools

Different operating tools can be used for local or remote access to the measuring device. Depending on the operating tool used, access is possible with different operating units and via a variety of interfaces.

Supported operating tools	Operating unit	Interface	Additional information
Web browser	Notebook, PC or tablet with Web browser	CDI-RJ45 service interfaceWLAN interface	Special Documentation for device
DeviceCare SFE100	Notebook, PC or tablet with Microsoft Windows system	CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol	→ 🖺 82
FieldCare SFE500	Notebook, PC or tablet with Microsoft Windows system	CDI-RJ45 service interfaceWLAN interfaceFieldbus protocol	→ 🖺 82
Device Xpert	Field Xpert SFX 100/350/370	HART fieldbus protocol	Operating Instructions BA01202S
			Device description files: Use update function of handheld terminal

- Other operating tools based on FDT technology with a device driver such as DTM/iDTM or DD/EDD can be used for device operation. These operating tools are available from the individual manufacturers. Integration into the following operating tools, among others, is supported:
 - FactoryTalk AssetCentre (FTAC) by Rockwell Automation → www.rockwellautomation.com
 - Process Device Manager (PDM) by Siemens → www.siemens.com
 - Asset Management Solutions (AMS) by Emerson → www.emersonprocess.com
 - FieldCommunicator 375/475 by Emerson → www.emersonprocess.com
 - Field Device Manager (FDM) by Honeywell → www.honeywellprocess.com
 - FieldMate by Yokogawa → www.yokogawa.com
 - PACTWare → www.pactware.com

The associated device description files are available at: www.endress.com \rightarrow Downloads

Web server

Thanks to the integrated Web server, the device can be operated and configured via a Web browser and via a service interface (CDI-RJ45) or via a WLAN interface. The structure of the operating menu is the same as for the local display. In addition to the measured values, status information on the

device is also displayed and allows the user to monitor the status of the device. Furthermore the device data can be managed and the network parameters can be configured.

A device that has a WLAN interface (can be ordered as an option) is required for the WLAN connection: order code for "Display; operation", option G "4-line, illuminated; touch control + WLAN". The device acts as an Access Point and enables communication by computer or a mobile handheld terminal.

Supported functions

Data exchange between the operating unit (such as a notebook for example) and the measuring device:

- Upload the configuration from the measuring device (XML format, configuration backup)
- Save the configuration to the measuring device (XML format, restore configuration)
- Export event list (.csv file)
- Export parameter settings (.csv file or PDF file, document the measuring point configuration)
- Export the Heartbeat verification log (PDF file, only available with the "Heartbeat Verification" application package)
- Flash firmware version for device firmware upgrade, for instance
- Download driver for system integration
- Visualize up to 1000 saved measured values (only available with the **Extended HistoROM** application package $\rightarrow \stackrel{\triangle}{=} 79$)

Web server special documentation

HistoROM data management

The measuring device features HistoROM data management. HistoROM data management comprises both the storage and import/export of key device and process data, making operation and servicing far more reliable, secure and efficient.

When the device is delivered, the factory settings of the configuration data are stored as a backup in the device memory. This memory can be overwritten with an updated data record, for example after commissioning.

Additional information on the data storage concept

There are different types of data storage units in which device data are stored and used by the device:

	Device memory	T-DAT	S-DAT
Available data	 Event logbook such as diagnostic events for example Parameter data record backup Device firmware package 	 Measured value logging ("Extended HistoROM" order option) Current parameter data record (used by firmware at run time) Peakhold indicator (min/max values) Totalizer values 	 Sensor data: nominal diameter etc. Serial number Calibration data Device configuration (e.g. SW options, fixed I/O or multi I/O)
Storage location	Fixed on the user interface board in the connection compartment	Attachable to the user interface board in the connection compartment	In the sensor plug in the transmitter neck part

Data backup

Automatic

- The most important device data (sensor and transmitter) are automatically saved in the DAT modules
- If the transmitter or measuring device is replaced: once the T-DAT containing the previous device data has been exchanged, the new measuring device is ready for operation again immediately without any errors
- If the sensor is replaced: once the sensor has been replaced, new sensor data are transferred from the S-DAT in the measuring device and the measuring device is ready for operation again immediately without any errors
- If exchanging the electronics module (e.g. I/O electronics module): Once the electronics module has been replaced, the software of the module is compared against the current device firmware. The module software is upgraded or downgraded where necessary. The electronics module is available for use immediately afterwards and no compatibility problems occur.

Manual

Additional parameter data record (complete parameter settings) in the integrated device memory HistoROM backup for:

- Data backup function
 Backup and subsequent restoration of a device configuration in the device memory HistoROM backup
- Data comparison function
 Comparison of the current device configuration with the device configuration saved in the device memory HistoROM backup

Data transfer

Manual

Transfer of a device configuration to another device using the export function of the specific operating tool, e.g. with FieldCare, DeviceCare or Web server: to duplicate the configuration or to store in an archive (e.g. for backup purposes)

Event list

Automatic

- Chronological display of up to 20 event messages in the events list
- If the Extended HistoROM application package (order option) is enabled: up to 100 event messages are displayed in the events list along with a time stamp, plain text description and remedial measures
- The events list can be exported and displayed via a variety of interfaces and operating tools e.g. DeviceCare, FieldCare or Web server

Data logging

Manual

If the **Extended HistoROM** application package (order option) is enabled:

- Record up to 1000 measured values via 1 to 4 channels
- User configurable recording interval
- Record up to 250 measured values via each of the 4 memory channels
- Export the measured value log via a variety of interfaces and operating tools e.g. FieldCare, DeviceCare or web server

Certificates and approvals

Currently available certificates and approvals can be called up via the product configurator.

CE mark

The device meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

RCM-tick symbol

The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".

Ex approval

The measuring device is certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA) document. Reference is made to this document on the nameplate.

The separate Ex documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales center.

Proline 500 - digital

ATEX/IECEx

Currently, the following versions for use in hazardous areas are available:

Ex db

Transmitter			Sensor
Category	Type of protection	Category	Type of protection
II(1)G	[Ex ia] IIC	II1/2G	Ex db ia IIC T4T1 Ga/Gb
II(1)G	[Ex ia] IIC	II2G	Ex db ia IIC T4T1 Gb
II3G	Ex ec nC [ia Ga] IIC T5T1 Gc	II1/2G	Ex db ia IIC T4T1 Ga/Gb
II3G	Ex ec nC [ia Ga] IIC T5T1 Gc	II2G	Ex db ia IIC T4T1 Gb

Ex tb

Transmitter			Sensor
Category	Type of protection	Category	Type of protection
II(1)D	[Ex ia] IIIC	II2D	Ex tb IIIC T** °C Db

Non-Ex / Ex ec

Transmitter		Sensor	
Category	Type of protection	Category	Type of protection
Non - Ex	Non-Ex	II3G	Ex ec IIC T4T1 Gc
II3G	Ex ec nC IIC T5T1 Gc	II3G	Ex ec IIC T4T1 Gc

$_{C}CSA_{US}$

Currently, the following versions for use in hazardous areas are available:

IS (Ex nA, Ex i)

Transmitter	Sensor
Class I Division 2 Groups A - D	Class I, II, III Division 1 Groups A-G

NI (Ex nA)

Transmitter	Sensor
Class I Division 2 Groups A - D	Class I Division 2 Groups A - D

Ex db

Transmitter	Sensor
Ex ec nC [ia Ga] IIC T5T1 Gc	Ex db ia IIC T4T1 Gb
Ex ec nC [ia Ga] IIC T5T1 Gc	Ex db ia IIC T4T1 Ga/Gb

Ex nA

Transmitter	Sensor
Class I, Zone 2 AEx/ Ex nA IIC T5T4 Gc	Class I, Zone 2 AEx/ Ex nA IIC T5T1 Gc

Ex tb

Transmitter	Sensor
Non - Ex	Zone 21, AEx/Ex ia tb IIIC T** °C Db

Functional safety

The measuring device can be used for flow monitoring systems (min., max., range) up to SIL 2 (single-channel architecture; order code for "Additional approval", option LA) and SIL 3 (multichannel architecture with homogeneous redundancy) and is independently evaluated and certified by the $T\ddot{U}V$ in accordance with IEC 61508.

The following types of monitoring in safety equipment are possible: Mass flow $\,$

Functional Safety Manual with information on the SIL device

HART certification

HART interface

The measuring device is certified and registered by the FieldComm Group. The measuring system meets all the requirements of the following specifications:

- Certified according to HART 7
- The device can also be operated with certified devices of other manufacturers (interoperability)

Radio approval

The measuring device has radio approval.

For detailed information regarding radio approval, see Special Documentation

Additional certification

CRN approval

Some device versions have CRN approval. A CRN-approved process connection with a CSA approval must be ordered for a CRN-approved device.

Other standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use - general requirements $\,$

■ IEC/EN 61326

Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements).

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 32

Data retention in the event of a power failure in field and control instruments with microprocessors

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMŪR NĒ 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 105

Specifications for integrating fieldbus devices in engineering tools for field devices

■ NAMUR NE 107

Self-monitoring and diagnosis of field devices

■ NAMUR NE 131

Requirements for field devices for standard applications

Classification of process sealing between electrical systems and (flammable or combustible) process fluids in accordance with ANSI/ISA 12.27.01 Endress+Hauser devices are designed in accordance with ANSI/ISA 12.27.01. allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC). These devices comply with the North American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids.

Further information can be found in the control drawings of the relevant devices.

Ordering information

Detailed ordering information is available as follows:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your Endress+Hauser Sales Center:www.addresses.endress.com
- Product Configurator the tool for individual product configuration

 Up-to-the-minute configuration data
 - Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
 - Automatic verification of exclusion criteria
 - Automatic creation of the order code and its breakdown in PDF or Excel output format
 - Ability to order directly in the Endress+Hauser Online Shop

Application packages

Many different application packages are available to enhance the functionality of the device. Such packages might be needed to address safety aspects or specific application requirements.

The application packages can be ordered with the device or subsequently from Endress+Hauser. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

ъ.		•	
Diagno	CTICC	tun	ctions
Diagno	outo	ıuıı	CHUIS

Package	Description
Extended HistoROM	Comprises extended functions concerning the event log and the activation of the measured value memory.
	Event log: Memory volume is extended from 20 message entries (standard version) to up to 100 entries.
	Data logging (line recorder): Memory capacity for up to 1000 measured values is activated. 250 measured values can be output via each of the 4 memory channels. The recording interval can be defined and configured by the user. Measured value logs can be accessed via the local display or operating tool e.g. FieldCare, DeviceCare or Web server.

Heartbeat Technology

Package	Description
Heartbeat Verification +Monitoring	Heartbeat Verification Meets the requirement for traceable verification to DIN ISO 9001:2008 Chapter 7.6 a) "Control of monitoring and measuring equipment". Functional testing in the installed state without interrupting the process. Traceable verification results on request, including a report. Simple testing process via local operation or other operating interfaces. Clear measuring point assessment (pass/fail) with high test coverage within the framework of manufacturer specifications. Extension of calibration intervals according to operator's risk assessment.
	 Heartbeat Monitoring Continuously supplies data, which are characteristic of the measuring principle, to an external condition monitoring system for the purpose of preventive maintenance or process analysis. These data enable the operator to: Draw conclusions - using these data and other information - about the impact on the measuring performance over time. Schedule servicing in time. Monitor the process or product quality, e.g. process stability.

Second gas group

Package	Description
3 3 1	This application package enables the configuration of two different standard gases/gas mixtures in the device and allows the user to switch from one gas group to another using the status input or (if available) via bus communication.

Accessories

Various accessories, which can be ordered with the device or subsequently from Endress+Hauser, are available for the device. Detailed information on the order code in question is available from your local Endress+Hauser sales center or on the product page of the Endress+Hauser website: www.endress.com.

Device-specific accessories

For the transmitter

Accessories	Description
Transmitter Proline 500 – digital	Transmitter for replacement or storage. Use the order code to define the following specifications: Approvals Output Input Display/operation Housing Software Proline 500 – digital transmitter: Order number: 6X5BXX-********A Proline 500 transmitter for replacement: It is essential to specify the serial number of the current transmitter when ordering. Based on the serial number, the device-specific data (e.g., calibration factors) of the replacement device can be used for the new transmitter. Proline 500 – digital transmitter: Installation Instructions EA01287D
External WLAN antenna	External WLAN antenna with 1.5 m (59.1 in) connecting cable and two angle brackets. Order code for "Accessory enclosed", option P8 "Wireless antenna wide area". ■ The external WLAN antenna is not suitable for use in hygienic applications. ■ Further information on the WLAN interface → 🗎 71. Order number: 71351317
Pipe mounting set	Installation Instructions EA01238D Pipe mounting set for transmitter. Proline 500 – digital transmitter Order number: 71346427 Installation Instructions EA01195D
Protective cover Transmitter Proline 500 – digital	Is used to protect the measuring device from the effects of the weather: e.g. rainwater, excess heating from direct sunlight. Proline 500 – digital transmitter Order number: 71343504 Installation Instructions EA01191D
Display guard Proline 500 – digital	Is used to protect the display against impact or scoring from sand in desert areas. Order number: 71228792 Installation Instructions EA01093D
Connecting cable Proline 500 – digital Sensor – Transmitter	The connecting cable can be ordered directly with the measuring device (order code for "Cable, sensor connection) or as an accessory (order number). The following cable lengths are available: order code for "Cable, sensor connection" Option B: 20 m (65 ft) Option E: User configurable up to max. 50 m Option F: User configurable up to max. 165 ft Maximum possible cable length for a Proline 500 – digital connecting cable: 300 m (1000 ft)

For the sensor

Accessories	Description
Welding socket	Order code for "Accessory enclosed" Option PC "Welding socket, G1" Option PD "Welding socket, 1" NPT" Option PE "Welding socket, G3%" Option PF "Welding socket, 3%" NPT" Can be ordered separately: order code DK6MB
Cold tap (ambient pressure)	Order code for "Accessory enclosed" Option PR "Cold tap G1", ambient pressure" Option PS "Cold tap 1" NPT, ambient pressure" Option PT "Cold tap G3%", ambient pressure" Option PU "Cold tap 3%" NPT, ambient pressure" Can be ordered separately: order code DK6ML
Hot tap (low pressure)	Order code for "Accessory enclosed" Option PG "Hot tap G1", low pressure max. 4.5 bar/65 psig" Option PH "Hot tap 1" NPT, low pressure max. 4.5 bar/65 psig" Option PK "Hot tap G¾", low pressure max. 4.5 bar/65 psig" Option PL "Hot tap ¾" NPT, low pressure max. 4.5 bar/65 psig" Mounting set contains welding socket (process connection), sensor connection with safety chain and ball valve. To insert or remove the sensor at process pressures up to max. 4.5 barg (65 psi). If the accessory is ordered separately, individual combinations can be selected. Order code DK6003
Hot tap (medium pressure)	Order code for "Accessory enclosed" Option PI "Hot tap G1", medium pressure max. 16 bar/230 psig" Option PJ "Hot tap 1" NPT, medium pressure max. 16 bar/230 psig" Option PM "Hot tap G¾", medium pressure max. 16 bar/230 psig" Option PN "Hot tap ¾" NPT, medium pressure max. 16 bar/230 psig" Mounting set contains welding socket (process connection), sensor connection, ball valve and extractor assembly. To insert or remove the sensor at process pressures up to max. 16 barg (230 psi). If the accessory is ordered separately, individual combinations can be selected. Order code DK6003
Flow conditioner	Available for the following pipe diameters: DN 80 (3") DN 100 (4") DN 150 (6") DN 250 (10") DN 250 (10") DN 300 (12") Available for the following process connections: PN10, EN1092-1 PN16, EN1092-1 PN25, EN1092-1 PN40, EN1092-1 PN40, EN1092-1 CL.150, ASME B16.5 CL.300, ASME B16.5 10K, JIS B2220 20K, JIS B2220 Screws and seals are not included in the delivery.

Communication-specific accessories

Accessories	Description
Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB interface. Technical Information TI00404F

HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. Technical Information TI00429F Operating Instructions BA00371F
Fieldgate FXA42	Is used to transmit the measured values of connected 4 to 20 mA analog measuring devices, as well as digital measuring devices Technical Information TI01297S Operating Instructions BA01778S Product page: www.endress.com/fxa42
Field Xpert SMT70	The Field Xpert SMT70 tablet PC for device configuration enables mobile plant asset management in hazardous and non-hazardous areas. It is suitable for commissioning and maintenance staff to manage field instruments with a digital communication interface and to record progress. This tablet PC is designed as an all-in-one solution with a preinstalled driver library and is an easy-to-use, touch-sensitive tool which can be used to manage field instruments throughout their entire life cycle.
	 Technical Information TI01342S Operating Instructions BA01709S Product page: www.endress.com/smt70
Field Xpert SMT77	The Field Xpert SMT77 tablet PC for device configuration enables mobile plant asset management in areas categorized as Ex Zone 1. Technical Information TI01418S Operating Instructions BA01923S Product page: www.endress.com/smt77

Service-specific accessories

Accessories	Description
Applicator	Software for selecting and sizing Endress+Hauser measuring devices: Choice of measuring devices for industrial requirements Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, flow velocity and accuracy. Graphic illustration of the calculation results Determination of the partial order code, administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
	Applicator is available: • Via the Internet: https://portal.endress.com/webapp/applicator • As a downloadable DVD for local PC installation.
W@M	W@M Life Cycle Management Improved productivity with information at your fingertips. Data relevant to a plant and its components is generated from the first stages of planning and during the asset's complete life cycle. W@M Life Cycle Management is an open and flexible information platform with online and on-site tools. Instant access for your staff to current, in-depth data shortens your plant's engineering time, speeds up procurement processes and increases plant uptime. Combined with the right services, W@M Life Cycle Management boosts productivity in every phase. For more information, visit www.endress.com/lifecyclemanagement
FieldCare	FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition. Operating Instructions BA00027S and BA00059S
DeviceCare	Tool to connect and configure Endress+Hauser field devices. Innovation brochure IN01047S

System components

Accessories	Description
Memograph M graphic data manager	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick. Technical Information TI00133R Operating Instructions BA00247R
Ceraphant PTC31B	The pressure transmitter for measuring the absolute and gauge pressure in gases, steam, liquids and dusts. It can be used to read in the operating pressure value. • Technical Information TI01130P • Operating Instructions BA01270P
Cerabar PMC21	The pressure transmitter for measuring the absolute and gauge pressure in gases, steam, liquids and dusts. It can be used to read in the operating pressure value. Technical Information TI01133P Operating Instructions BA01271P
Cerabar S PMC71	The pressure transmitter for measuring the absolute and gauge pressure of gases, steam and liquids. It can be used to read in the operating pressure value. Technical Information TI00383P Operating Instructions BA00271P

Supplementary documentation

For an overview of the scope of the associated Technical Documentation, refer to the following:

- W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from nameplate
- Endress+Hauser Operations App: Enter the serial number from the nameplate or scan the 2D matrix code (QR code) on the nameplate

Standard documentation

Brief Operating Instructions

Brief Operating Instructions for the sensor

Measuring device	Documentation code
Proline t-mass I	KA01443D

Brief Operating Instructions for transmitter

	Documentation code	
Measuring device	HART	Modbus RS485
Proline 500 – digital	KA01446D	KA01447D

Operating Instructions

Measuring device	Documentation code	
	HART	Modbus RS485
t-mass I 500	BA01997D	BA01999D

Description of Device Parameters

	Documentation code	
Measuring device	HART	Modbus RS485
t-mass 500	GP01145D	GP01146D

Device-dependent additional documentation

Safety instructions

Safety instructions for electrical equipment for hazardous areas.

Contents	Documentation code
ATEX/IECEx Ex d/Ex de	XA01970D
ATEX/IECEx Ex ec	XA01971D
cCSAus XP	XA01974D
cCSAus Ex d/ Ex de	XA01972D
cCSAus Ex nA	XA01973D

Remote display and operating module DKX001

Contents	Documentation code
ATEX/IECEx Ex i	XA01494D
ATEX/IECEx Ex ec	XA01498D
cCSAus IS	XA01499D
cCSAus Ex nA	XA01513D
INMETRO Ex i	XA01500D

Contents	Documentation code
INMETRO Ex ec	XA01501D
NEPSI Ex i	XA01502D
NEPSI Ex nA	XA01503D

Special Documentation

Contents	Documentation code		
	HART	Modbus RS485	
Functional Safety Manual	SD02484D	-	
Heartbeat Technology	SD02479D	SD02480D	
Web server	SD02487D	SD02488D	

Installation Instructions

Contents	Comment
Installation instructions for spare part sets and accessories	Documentation code: specified for each individual accessory .

Registered trademarks

HART®

Registered trademark of the FieldComm Group, Austin, Texas, USA

Modbus[®]

Registered trademark of SCHNEIDER AUTOMATION, INC.

