

Technical Information

Proline t-mass A 150

Thermal Mass Flow Measuring System For easy and cost-effective measurement of utility gases

Area of application

- Cost-effective measuring device for different utility gas applications
- System optimization due to targeted monitoring of utility gases
- Leakage detection in gas networks
- Suitable for in-house consumption accountancy

Device properties

- Direct mass flow measurement (kg/h, lbs/h, Scf/min, Nm³, etc.)
- Selection of gases: air, carbon dioxide, nitrogen and argon
- Nominal diameters: DN 15 to 50 (1/2 to 2")
- Flange and threaded connections
- Process temperature up to +100 °C (+212 °F)
- Process pressure: 500 mbar a to 40 bar g (7.25 psi a to 580 psi g)
- Calibration accuracy up to 3% o.r. and operable flow range up to 150:1
- 4-20 mA HART, pulse/frequency/status
- cCSAus Cl. 1 Div. 2, PED, CRN
- IP 66/67

Your benefits

The device enables direct measurement of the mass flow of utility gases. Minimum maintenance and negligible pressure loss drive down operating costs.

Sizing – correct product selection Applicator - the reliable, easy-to-use tool for selecting measuring devices for every application

Commissioning - reliable and intuitive

- Intuitive configuration and simple operation
- Preconfigured in accordance with individual requirements

Operation

Multivariable output values measured: mass flow, corrected volume flow, FAD volume flow and temperature

Life Cycle Management (W@M) for your plant

Table of contents

Document information	3 3
Function and system design Measuring principle Measuring system	4 4
Characteristic values	5 5 5 6
OutputOutput signal	6 7 8 8 8
Power supply . Terminal assignment . Power consumption . Current consumption . Power supply failure . Electrical connection . Potential equalization . Terminals . Cable entries . Cable specification .	9 9 10 10 10 11 11 11 12
Performance characteristics	12 12 13 13 13
Installation	14 14 14 14 15
Environment	17 17 17 17 17 17 17
Process	17 17 17 19

Pressure loss	19 20 20
Mechanical construction	20 20 25 26 27
Operability	27 27 28 28 29
Certificates and approvals CE mark C-Tick symbol Ex approval Pressure Equipment Directive Other standards and guidelines	29 29 29 29 29 30
Ordering information	30
Application packages	30
Accessories	30 30 30 31 32
Documentation	32 32 32
Registered trademarks	32

Document information

Document conventions

Electrical symbols

Symbol	Meaning
A0011197	Direct current A terminal to which DC voltage is applied or through which direct current flows.
A0011198	Alternating current A terminal to which alternating voltage (sine-wave) is applied or through which alternating current flows.
	Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.
A0011199	Protective ground connection A terminal which must be connected to ground prior to establishing any other connections.
A0011201	Equipotential connection A connection that has to be connected to the plant grounding system: This may be a potential equalization line or a star grounding system depending on national or company codes of practice.

Tool symbols

Symbol	Meaning					
$\mathbf{O} \leqslant$	orx screwdriver					
A0013442						
0	Flat blade screwdriver					
A0011220						
96	Phillips head screwdriver					
A0011219						
A0011221	Allen key					
Ŕ	Hexagon wrench					
A0011222						

Symbols for certain types of information

Symbol	Meaning
A0011182	Allowed Indicates procedures, processes or actions that are allowed.
A0011183	Preferred Indicates procedures, processes or actions that are preferred.
A0011184	Forbidden Indicates procedures, processes or actions that are forbidden.
A0011193	Tip Indicates additional information.
A0011194	Reference to documentation Refers to the corresponding device documentation.
A0011195	Reference to page Refers to the corresponding page number.
A0011196	Reference to graphic Refers to the corresponding graphic number and page number.

Symbols in graphics

Symbol	Meaning
1, 2, 3,	Item numbers
1. , 2. , 3	Series of steps
A, B, C,	Views
A-A, B-B, C-C,	Sections
≈→ A0013441	Flow direction
A0011187	Hazardous area Indicates a hazardous area.
A0011188	Safe area (non-hazardous area) Indicates a non-hazardous location.

Function and system design

Measuring principle

The thermal measuring principle is based on the cooling of a heated resistance thermometer (PT100), from which heat is extracted by the passing gas. The gas passes two PT100 resistance thermometers in the measurement section. One of these is used in the conventional way as a temperature probe, while the other serves as a heating element. The temperature probe monitors and records the effective process temperature while the heated resistance thermometer is kept at a constant differential temperature (compared to the measured gas temperature) by controlling the electrical current used by the heating element. The greater the mass current passing over the heated resistance thermometer, the greater the extent to which cooling takes place and therefore the stronger the current required to maintain a constant differential temperature. This means that the heat current measured is an indicator of the mass flow rate of the gas.

Measuring system

The device consists of a transmitter and a sensor.

One device version is available: compact version comprising transmitter and sensor.

Transmitter

t-mass 150	Materials: Aluminum coating AlSi10Mg
	 Configuration: Four-line local display with key operation and guided menu ("Setup") for applications Operating tools (e.g. FieldCare)
A0015480	Other special features: May also be ordered without local display

Sensor

Characteristic values

Measured variable	Direct meas	Direct measured variables				
	Mass flowGas temper	Mass flowGas temperature				
	Calculated r	neasured variables				
	CorrectedFAD (free a	volume flow iir delivery) volume flow				
Measuring range	The available measuring range depends on the choice of gas, the size of the pipe and the use of a flow conditioner. The measuring device is calibrated with air (under ambient conditions) and the value is converted in order to adapt it to the customer's gas if necessary.					
	To obtain information on other gases and process conditions, please contact your Endress+Hauser sales office.					
	To calculate the measuring range with and without a flow conditioner (option L ($\rightarrow \ge 12$) ($\rightarrow \ge 15$)), use the <i>Applicator</i> ($\rightarrow \ge 31$) product selection tool.					
	The following	The following tables list the ranges available for air (without flow conditioner).				
	Measuring range "Calibration flow", option G and H (\rightarrow 🖹 12)					
	SI units for E	SI units for EN (DIN) flange versions				
	DN	[kg/h]	[Nm ³ /h] at 0 °C (1.013 bar a)	[Nm ³ /h at 15 °C (1.013 bar a)		

DN	[kg/h]		[kg/h] [Nm ³ /h] at 0 °C (1.013 bar a)		[Nm ³ /h at 15 °C (1.013 bar a)	
[mm]	min.	Max.	min.	Max.	min.	Max.
15	0.5	53	0.38	41	0.4	43
25	2	200	1.5	155	1.6	164
40	6	555	4.6	429	4.9	453
50	10	910	7.7	704	8.2	744

US units for ASME flange versions

DN	[lb/h]		DN [I		[Scf/min] at 32	2 °F (14.7 psi a)	[Scf/min] at 59	9 °F (14.7 psi a)
[in]	min.	Max.	min.	Max.	min.	Max.		
1/2	1.1	116	0.23	24	0.24	25		
1	4.4	440	0.9	91	1.0	96		
1 1/2	13.2	1 220	2.7	252	2.9	266		
2	22.0	2002	4.5	413	4.8	436		

Measuring range "Calibration flow" option K ($\rightarrow \square 12$)

SI units for EN (DIN) flange versions

DN	[kg/h]		[Nm ³ /h] at 0 °	C (1.013 bar a)	[Nm ³ /h at 15 °	C (1.013 bar a)
[mm]	min.	Max.	min.	Max.	min.	Max.
15	0.5	80	0.38	62	0.24	65
25	2	300	1.5	232	1.0	245
40	6	833	4.6	644	2.3	681
50	10	1 365	7.7	1 056	4.8	1116

US units for ASME flange versions

DN	[lb/h]		DN [it		[Scf/min] at 32	2 °F (14.7 psi a)	[Scf/min] at 59	9 °F (14.7 psi a)
[in]	min.	Max.	min.	Max.	min.	Max.		
1/2	1.1	174	0.23	36	0.24	38		
1	4.4	660	0.9	136	1.0	144		
1 1/2	13.2	1 830	2.7	378	2.9	399		
2	22.0	3003	4.5	620	4.8	656		

Operable flow range

Over 100:1 (over 150:1 for calibration option code K).

Even in the extended measuring range (above the calibrated end value), the flow rate is captured and provided as an output signal. However, the extended range is not subject to the specified measuring uncertainty.

Output

Output signal

Current output

Current output	4-20 mA HART, active
Maximum output values	 DC 24 V (no flow) 22 mA If the option Defined value is selected in the Failure mode parameter : 22.5 mA
Load	0 to 750 Ω
Resolution	16 Bit or 0.38 μA
Damping	Adjustable: 0 to 999 s
Assignable measured variables	 Mass flow Corrected volume flow FAD volume flow Temperature

Pulse/frequency/switch output

Function	Can be set to pulse, frequency or switching output
Version	Passive, open collector
Maximum input values	 DC 30 V 25 mA
Voltage drop	For 25 mA: \leq DC 2 V
Pulse output	

Pulse width	Adjustable: 0.5 to 2000 ms \rightarrow pulse rate: 0 to 1000 Pulse/s	
Pulse value	Adjustable	
Assignable measured variables	Mass flowCorrected volume flowFAD volume flow	
Frequency output		
Maximum frequency	Adjustable: 0 to 1 000 Hz	
Damping	Adjustable: 0 to 999 s	
Pulse/pause ratio	1:1	
Assignable measured variables	 Mass flow Corrected volume flow FAD volume flow Temperature 	
Switching output		
Switching behavior	Binary, conductive or non-conductive	
Switching delay	Adjustable: 0 to 100 s	
Number of switching cycles	Unlimited	
Assignable functions	 Off On Diagnostic behavior Limit value Status 	

Signal on alarm

Depending on the interface, failure information is displayed as follows:

Current output

Failure mode	Can be selected (as per NAMUR recommendation NE 43)	
Minimum alarm	3.6 mA	
Maximum alarm	22 mA	
Adjustable value	3.59 to 22.5 mA	

Pulse/frequency/switch output

Pulse output	
Failure mode	Choose from: Actual value No pulses
Frequency output	
Failure mode	Choose from: Actual value Defined value: 0 to 1250 Hz 0 Hz
Switching output	
Failure mode	Choose from: Current status Open Closed

Local display

Plain text display	With information on cause and corrective action
--------------------	---

	Status signal as per NAMUR recommendation NE 107				
	Operating tool				
	Via digital communication: HART protocolVia service interface				
	Plain text display With information on cause and corrective action				
	Additional information of	on remote operation($\rightarrow \triangleq 28$)			
Low flow cut off	The switch point for low flow	cut off is programmable.			
Galvanic isolation	The following connections are galvanically isolated from each other: Outputs Voltage supply 				
Protocol-specific data	HART	HART			
	Manufacturer ID	0x11			
	Device type ID	0x66			
	HART protocol revision	6.0			
	Device description files (DTM, DD)	Information and files under: www.endress.com			
	HART load	Min. 250 Ω			
	Dynamic variables	The measured variables can be freely assigned to the dynamic variables.			
		Measured variables for PV (primary dynamic variable) Mass flow Corrected volume flow FAD volume flow Temperature 			
		Measured variables for SV, TV, QV (secondary, tertiary and quaternary dynamic variable) Mass flow Corrected volume flow FAD volume flow Temperature Totalizer			

Power supply

Terminal assignment

Transmitter

Connection version 4-20 mA HART, pulse/frequency/switching output

- 1
- Supply voltage Signal transmission: Pulse/frequency/switching output Signal transmission: 4-20 mA HART 2
- 3
- 4 Ground terminal for cable shield

Supply voltage

Order characteristic for	Terminal numbers		
"Power supply"	1 (L+)	2 (L-)	
	2		
Option D	DC 24 V (18 to 30 V)		

Signal transmission

Order characteristic for	Terminal numbers			
"Output"	Output 1		Output 2	
	26 (+)	27 (-)	24 (+)	25 (-)
Option A	4-20 mA HART active –		-	
Option B	4-20 mA HART active		Pulse/frequency	y/switch output
Option K	- Pulse/frequency/switch output			

Supply voltage

DC 24 V (18 to 30 V)

The power supply circuit must comply with SELV/PELV requirements.

P	ower	consumption
---	------	-------------

Order characteristic for "Output"	Maximum power consumption
 Option A: 4-20mA HART Option B: 4-20mA HART, pulse/frequency/switching output Option K: Pulse/frequency/switching output 	3.1 W

Current consumption	Order characteristic for "Output"	Maximum current consumption	Maximum switch-on current
	 Option A: 4-20mA HART Option B: 4-20mA HART, pulse/frequency/switching output Option K: Pulse/frequency/switching output 	185 mA	< 2.5 A
Power supply failure	 Totalizers stop at the last value measured. Configuration is retained in the device memory. Error messages (incl. total operated hours) are stored 		
Electrical connection	Connecting the transmitter		

1

Cable entry for supply voltage Cable entry for signal transmission 2

Connection examples

⊡ 1 Connection example for current output, 4-20 mA active

1

Control system (e.g. PLC) Analog display unit: observe maximum load (\rightarrow $\stackrel{\frown}{=}$ 6) 2

Connection example for current output, 4–20 mA HART active

- 1 Control system (e.g. PLC)
- 2 Observe cable specification (\rightarrow 12)
- 3 Connection for Field Communicator 375/475 or Commubox FXA191/195
- 4 Resistor for HART communication ($\geq 250 \Omega$): observe maximum load ($\rightarrow \triangleq 6$)
- 5 Analog display unit: observe maximum load ($\rightarrow \stackrel{\frown}{=} 6$)

Connection example for pulse/frequency output (passive)

- *1* Automation system with pulse/frequency input (e.g. PLC)
- *2* Power supply $(\rightarrow \square 12)$
- 3 Transmitter: Observe input values ($\rightarrow \square 6$)

Connection example for switching output (passive)

- 1 Control system with switch input (e.g. PLC)
- 2 Power supply $(\rightarrow \square 12)$
- 3 Transmitter: Observe input values ($\rightarrow \square 6$)

Potential equalization	No special measures for potential equalization are required.
Terminals	Plug-in screw terminals for specified wire cross-sections
Cable entries	 Cable gland: M20 × 1.5 with cable Ø 6 to 12 mm (0.24 to 0.47 in) Thread for cable entry: NPT ½" G ½"

Cable specification

Wire cross-sectional area

0.5 to 1.5 mm^2 (21 to 16 AWG)

Permitted temperature range

- -40 °C (-40 °F)...≥ 80 °C (176 °F)
- Minimum requirement: cable temperature range \geq ambient temperature + 20 K

Signal cable

Current output

For 4-20 mA HART: Shielded cable recommended. Observe grounding concept of the plant.

Pulse/frequency/switch output

Standard installation cable is sufficient.

Supply voltage cable

Standard installation cable is sufficient.

Performance characteristics

Reference operating conditions	 Calibration systems traceable to national standards Accredited in accordance with ISO/IEC 17025 Air controlled to 24 °C ± 0.5 °C (75.2 °F ± 0.9 °F) at atmospheric pressure Humidity controlled < 40 % RH
Maximum measured error	o.r. = of reading; o.f.s. = of full scale value
	• The full scale value depends upon the nominal diameter of the measuring device and the max. flow of the calibration rig.

• Full scale values of the calibrated measuring range.($\rightarrow \equiv 5$)

□ 5 Maximum measured error (% mass flow) as % of measured value/full scale value. G, H, K, L: Order code options for "Calibration flow", see the following table

Order code option for "Calibration flow"	Accuracy	Description
K L	 Q = 100 to 150 %: from ±3 %to ±6.5 % of the current measured value increasing linearly as expressed in the following equation: ±3 ± (X_n-100) × 0.07[% o.r.] (100 %< X_n≤150 %; X_n = current flow as a % o.f.s.) Q = 15 to 100 %: ±3 % of current measured value Q = 1 to 15 % ±0.45 % o.f.s. (all data under reference conditions) 	The measuring device is calibrated and adjusted on an accredited and traceable calibration rig . The accuracy is certified with a calibration protocol.
Н	 Q = 20 to 100 % ±4 % of current measured value Q = 1 to 20 % ±0.8 % o.f.s. (all data under reference conditions) 	The measuring performance of the device is tested, and a verification protocol confirms that the device measures within the specified tolerance.
G	Q = 1 to 100 % ±5 % o.f.s. (under reference conditions)	This version is subject to neither a calibration nor a verification of measuring performance.

Accuracy of outputs

Current output

	Ассигасу	Max. ±0.05 % o.f.s. or ±10 μA	
Repeatability	±0.5 % of value for velocitie	s > 1.0 m/s (3.3 ft/s)	
Response time	Typically < 3 s for 63 % of a given step change (in both directions)		
Influence of medium pressure	Air: 0.35 % of value per bar	(0.02 % per psi) of process pressure change	

Inlet and outlet runs

The thermal measuring principle is sensitive to disturbed flow conditions.

- As a general rule, the measuring device should always be installed as far away as possible from any flow disturbances. For further information, please refer to → ISO 14511.
- If possible, the sensor should be installed upstream from valves, T-pieces, elbows etc. To attain the specified level of accuracy of the measuring device, the below mentioned inlet and outlet runs must be maintained at minimum. If there are several flow disturbances present, the longest specified inlet run must be maintained.

Recommended inlet and outlet runs (without flow conditioner)

- 1 reduction
- 2 expansion
- 3 90° elbow or T-piece
- 4 $2 \times 90^{\circ}$ elbow
- 5 Control valve
- 6 $2 \times 90^{\circ}$ elbow (3-dimensional)

Outlet run for pressure or temperature transmitter

If a pressure or temperature measuring device is installed downstream of the measuring device, make sure there is sufficient distance between the two devices.

PT Pressure measuring device

TT Temperature transmitter

Flow conditioner (19 hole) for use with fixed flanges

If the inlet runs cannot be observed, the use of a flow conditioner is recommended.

6 Recommended inlet and outlet runs when using a flow conditioner

This is a special Endress+Hauser design which was developed for the sensor t-mass A 150 (DN 40 to 50 / 1 $\frac{1}{2}$ to 2"). The arrangement of the individual screw holes and their diameter means that the flow conditioner can be used for different flange pressure ratings.

The flow conditioner and the seals are installed between the pipe flange and the measuring system. To ensure correct centering of the flow conditioner, use only standard screws which match the screw holes .

Please note that the flow conditioner must be mounted in such a way that the alignment notch is pointing in the direction of the transmitter. Incorrect installation could have a negative effect on the measurement accuracy.

- 1 Flow conditioner
- 2 Seal
- 3 Alignment notch
- *4 Correctly align the alignment notch and transmitter.*

Not suitable for lap joint flange or threaded versions!

- Order the sensor and the flow conditioner together to ensure that they are calibrated together. Joint calibration guarantees optimum performance. Ordering the flow conditioner separately and using it with the device will further increase measurement uncertainty.
- The use of flow conditioners from other suppliers will affect the flow profile and pressure drop and will have an adverse effect on performance.
- Screws, nuts, seals etc. are not included in the scope of supply and must be provided by the customer.

Pressure loss

The pressure loss for flow conditioners is calculated as follows:

$\Delta \mathbf{p} = \mathbf{K} \cdot \frac{\dot{\mathbf{m}}^2}{\rho} \cdot \frac{1}{\mathbf{D}^4}$			A0005243
$ \begin{split} \Delta p &= \text{Pressure loss [mbar]} \\ \rho &= \text{Density [kg/m^3]} \\ K &= \text{Constant 1876 (SI units) or} \end{split} $	3.4 · 10 ⁻⁷ (US units)	m = Mass flow [kg/h] D = Diameter [mm]	

Calculation example

- $\dot{\mathbf{m}} = 412 \text{ kg/h}$ $\rho = 8.33 \text{ kg/m}^3 \text{ at 7 bar abs. and 20 °C (68 °F)}$ D = 42.8 mm for DN 40, PN 40

Calculation in SI units

 $\Delta p = 1\,876\,\cdot\,(412^2\div 8.33)\,\cdot\,(1\div 42.8^4) = 11.4\;\text{mbar}$

Environment

Ambient temperature range	Measuring device	-40 to +60 °C (-40 to +140 °F)			
	Local display	-20 to $+60$ °C (-4 to $+140$ °F), the readability of the display may be impaired at temperatures outside the temperature range.			
	 If operating outdoors: Avoid direct sunlight, particularly in warm climatic regions. 				
Storage temperature	-40 to +80 °C (-40 to +176	o °F), preferably at +20 °C (+68 °F)			
Degree of protection	 Transmitter As standard: IP66/67, type 4X enclosure When housing is open: IP20, type 1 enclosure Display module: IP20, type 1 enclosure 				
	Sensor IP66/67, type 4X enclosure				
Shock resistance	As per IEC/EN 60068-2-31				
Vibration resistance	Acceleration up to 2 g, 10 to 150 Hz, as per IEC/EN 60068-2-6				
Electromagnetic compatibility (EMC)	As per IEC/EN 61326 and N	VAMUR Recommendation 21 (NE 21). the Declaration of Conformity.			

Process

Medium temperature range	Sensor -40 to +100 °C (-40 to +212 °F)
Pressure-temperature ratings	The following material load diagrams refer to the entire device and not just the process connection.

🖾 8 Flange material 316L

9 Flange material 1.4301

Flange connection (lap joint flange) as per EN 1092-1 (DIN 2501)

□ 10 Flange material S235JR/1.0038

Flange connection (lap joint flange) as per ASME B16.5

□ 11 Flange material A105

External thread as per EN (DIN), ASME

□ 12 Flange material 1.4404/316L

 Flow limit
 See "Measuring range"(→ ≧ 5) section The velocity in the measuring tube should not exceed 70 m/s (230 ft/s).

 Pressure loss
 Negligible (without flow conditioner). For a precise calculation, use the Applicator.

Mechanical construction

Dimensions in SI units

DN [mm]	A ¹⁾ [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	L [mm]
15	146	133	129	109	153	92	245
25	146	133	129	115	153	92	245
40	146	133	129	110	200	120	320
50	146	133	129	116	250	150	400

1) For version without local display: values - 7 mm

Dimensions in US units

DN [in]	A ¹⁾ [in]	B [in]	C [in]	D [in]	E [in]	F [in]	L [in]
1/2	5.75	5.24	5.08	4.29	6.02	3.62	9.65
1	5.75	5.24	5.08	4.53	6.02	3.62	9.65
11/2	5.75	5.24	5.08	4.33	7.87	4.72	12.6
2	5.75	5.24	5.08	4.57	9.84	5.91	15.75

1) For version without local display: values -0.28 in

Process connections in SI units

Fixed flanges as per EN (DIN), ASME

Fixed flange as per EN 1092-1 / B2 / PN40									
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]				
15	95	65	$4 \times Ø14$	16	15.8				
25	115	85	$4 \times Ø14$	18	27.9				
40	150	110	4 × Ø18	18	42.8				
50	165	125	$4 \times Ø18$	20	54.8				

Fixed flanges as per ASME B16.5 / Cl 300								
DN [in]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]			
1/2	95	66.7	4 × Ø15.9	23	15.8			
1	125	88.9	4 × Ø19.1	27	27.9			
1 1/2	155	114.3	4 × Ø22.2	31	42.8			
2	165	127	8 × Ø19.1	34	54.8			

Lap joint flanges as per EN (DIN), ASME

Lap joint flange, stamping plate as per EN 1092-1/ PN 10								
DN [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]		
15	95	65	4 × Ø13.5	11.5	34.9	15.8		
25	115	85	4 × Ø13.5	16	50.8	27.9		
40	150	110	4 × Ø17.5	18	73.0	42.8		
50	165	125	4 × Ø17.5	20	92.1	54.8		

Lap joint flange as per EN 1092-1/ PN 16										
DN [mm]	A [mm]	B [mm]	C [mm]	C D [mm] [mm]		F [mm]				
15	95	65	4 × Ø14	14	34.9	15.8				
25	115	85	4 × Ø14	16	50.8	27.9				
40	150	110	4 × Ø18	18	73.0	42.8				
50	165	125	4 × Ø18	20	92.1	54.8				

Lap joint flang	Lap joint flanges as per ASME B16.5 / Cl 150										
DN [in]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]					
1/2	90	60.3	4 × Ø15.9	16	34.9	15.8					
1	110	79.4	4 × Ø15.9	18	50.8	27.9					
1 1/2	125	98.4	4 × Ø15.9	23	73.0	42.8					
2	150	120.7	4 × Ø19.1	26	92.1	54.8					

External thread as per EN (DIN), ASME

R external thread as per EN 10226-1, ISO 7-1									
DN [mm]	A [in]	B [mm]	C [mm]						
15	R 1/2	8.2	15.8						
25	R 1	10.4	26.7						
40	R 1½	12.7	40.9						
50	R 2	15.9	52.5						

NPT external thread as per ASME B1.20.1								
DN [in]	A [in]	B [mm]	C [mm]					
1/2	½ NPT	8.13	15.8					
1	1 NPT	10.16	26.7					
11/2	1½ NPT	10.67	40.9					
2	2 NPT	11.7	52.5					

Process connections in US units

Fixed flanges as per ASME

Fixed flanges as per ASME B16.5 / Cl 300									
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]				
1/2	3.74	2.63	4 × Ø5/8	0.91	0.62				
1	4.92	3.5	$4 \times Ø3/4$	1.06	1.1				

Fixed flanges as per ASME B16.5 / Cl 300									
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]				
1 1/2	6.1	4.5	4 × Ø7/8	1.22	1.69				
2	6.5	5	4 × Ø9/4	1.34	2.16				

Lap joint flanges as per ASME

Lap joint flanges as per ASME B16.5 / Cl 150										
DN [in]	A [in]	B [in]	C [in]	D [in]	E [in]	F [in]				
1/2	3.54	2.37	4 × Ø5/8	0.63	1.37	0.62				
1	4.33	3.13	4 × Ø5/8	0.71	2.00	1.10				
11/2	4.92	3.87	4 × Ø5/8	0.91	2.87	1.69				
2	5.91	4.76	4 × Ø3/4	1.02	3.63	2.16				

External thread as per ASME B1.20.1

NPT external thread as per ASME B1.20.1								
DN [in]	A [in]	B [in]	C [in]					
1/2	½ NPT	0.32	0.62					
1	1 NPT	0.4	1.05					
11/2	11/2 NPT	0.42	1.61					
2	2 NPT	0.46	2.07					

Flow conditioner as per EN(DIN)/ASME

Dimensions in SI units

As per EN(DIN) / PN 40

DN	Туре	D1	D2	F	۵	R	S	Weight
[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
40	А	135	108	17	5	2.5	7.0	0.7
50	А	150	123	17	5	2.5	8.5	1.0

As per ASME / Cl 300 Sched 40

	DN	Туре	D1	D2	D3	F	۵	R	S	Weight
[mm]	[in]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
40	1 1/2	В	140	109.5		21.5	5	2.5	6.5	0.9
50	2	В	150	122	115.5	19	5	2.5	8.5	1.3

Dimensions in US units

As per ASME / Cl 300 Sched 40

DN	Туре	D1	D2	D3	F	۵	R	S	Weight
[in]		[in]	[lbs]						
1 1/2	В	5.5	4.31	-	0.85	0.2	0.1	0.26	1.9
2	В	5.9	4.80	4.55	0.7	0.2	0.1	0.33	2.8

Weight

Weight in SI units

Compact version

DN [mm]		Weight [kg]									
	Fixed	l flange		Threaded version							
	CL300	PN40	PN16	PN10	CL150						
15	4.0	3.9	4.1	3.2	3.4	2.6					
25	5.5	4.8	5.0	3.5	4.3	2.6					

DN [mm]	Weight [kg]						
	Fixed flange		Lap joint flange			Threaded version	
	CL300	PN40	PN16	PN10	CL150		
40	7.9	7.0	7.5	4.9	6.1	3.1	
50	9.9	9.3	9.4	5.9	8.0	3.8	

Weight in US units

Compact version

DN [mm]	Weight [lbs]						
	Fixed flange		Lap joint flange			Threaded version	
	CL300	PN40	PN16	PN10	CL150		
15	8.8	8.6	9.0	7.1	7.5	5.7	
25	12.1	10.6	11.0	7.7	9.5	5.7	
40	17.4	15.4	16.5	10.8	13.5	6.8	
50	21.8	20.5	20.7	13.0	17.6	8.4	

Materials

Transmitter housing

- Order characteristic for "Housing", option A: aluminum costing AlSi10Mg
- Window material: glass

Sensor

Process connections

Fixed flanges: EN 1092-1/ ASME B16.5

- Stainless steel 1.4404 as per EN 10222-5
- Stainless steel F316/F316L as per ASTM A182

Lap joint flanges: EN 1092-1/ ASME B16.5

- Stub end:
 - Stainless steel 1.4404/1.4435 as per EN 10216-5; cold worked
 - Stainless steel 316L as per ASTM A312; cold worked
- Lap-joint flange:
 - Carbon steel, zinc-plated 1.0038 as per EN 10025-2
 - Stainless steel 1.4301/1.4307 as per EN 10028-7

Threaded version: R external thread as per EN 10226-1, ISO 7/1 and NPT external thread as per ASME B1.20.1

- Stainless steel 1.4404/1.4435 as per EN 10216-5
- Stainless steel 316L as per ASTM A312

Measuring tube

- DN 15(½ in)
 - Stainless steel 1.4404 as per EN 10272/EN10216-5
 - Stainless steel 316/316L as per ASTM A479/ ASTM A312
- DN 25 to 50 (1 to 2 in)
 - Stainless steel 1.4404 as per EN 10216-5
 - Stainless steel 316/316L as per ASTM A312

Transducer

- Stainless steel 1.4404/1.4435 as per EN 10216-5/ EN10272/ EN 10028-7
- Stainless steel 316L as per ASTM A269/ ASTM A479/ ASTM A240

Cable entries

Order characteristic for "Housing", option A: compact, aluminum coating

Electrical connection	Type of protection	Material
Cable gland M20 \times 1.5	For non-hazardous areas	Plastic
Thread G ½" via adapter	For non-Ex and Ex	Nickel-plated brass
Thread NPT ½" via adapter		

Accessories

Flow conditioner as per EN(DIN)/ASME

1.4404 as per EN 10272 and 316L as per A479 $\,$

1.4404 as per EN 10216-5 and 316L as per A312

Process connections

- Lap joint flanges, fixed flanges
 as per EN 1092-1
- as per ASME B16.5
- External thread
 - R external thread as per EN 10226-1
 - NPT external thread as per ASME B1.20.1
- For information on the materials of the process connections ($\rightarrow \ge 26$)

Operability

Operating concept	Operator-oriented menu structure for user-specific tasks Commissioning Operation Diagnostics Expert level 				
	Ouick and safe commissioning Menu guidance with brief explanations of the individual parameter functions				
	 Reliable operation Operation in different languages: (→ ≧ 29) Via local display Via operating tools Uniform operating philosophy applied to device and operating tools 				
	 Efficient diagnostics increase measurement reliability Remedial information is integrated in plain text Diverse simulation options and optional line recorder functions 				

Local operation "Display; Operation" Order code option C Image: Contrast of the second status of the second status variables can be individually configured

- Permitted ambient temperature for the display: -20 to +60 °C (-4 to +140 °F)
 - The readability of the display may be impaired at temperatures outside the temperature range.

Operating elements

Local operation with 3 push buttons $(\textcircled{\odot}, \textcircled{\odot}, \textcircled{\odot})$

Additional functionality

- Data backup function
 - The device configuration can be saved in the display module.
- Data comparison function
- The device configuration saved in the display module can be compared to the current device configuration. • Data transfer function
 - The transmitter configuration can be transmitted to another device using the display module.

Remote operation

Via HART protocol

This communication interface is present in the following device version:

- Order characteristic for "Outlet", option A: 4-20 mA HART
- Order characteristic for "Outlet", option B: 4-20 mA HART, pulse/frequency/switching output

□ 13 Options for remote operation via HART protocol

- 1 Control system (e.g. PLC)
- 2 Field Communicator 475
- 3 Computer with operating tool (e.g. FieldCare, AMS Device Manager, SIMATIC PDM)
- 4 Commubox FXA195 (USB)
- 5 Field Xpert SFX100
- 6 VIATOR Bluetooth modem with connecting cable
- 7 Transmitter

Via service interface (CDI)

- 1 Service interface (CDI) of the measuring device
- 2 Commubox FXA291
- 3 Computer with "FieldCare" operating tool

Languages

- Can be operated in the following languages:
- Via local display:
 - English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Japanese, Chinese, Korean, Bahasa (Indonesian), Vietnamese, Czech
- Via operating tools:
 - English, German, French, Spanish, Italian, Dutch, Portuguese, Polish, Russian, Turkish, Japanese, Chinese, Korean, Bahasa (Indonesian), Vietnamese, Czech

Certificates and approvals

CE mark	The measuring system is in conformity with the statutory requirements of the applicable EC Directives. These are listed in the corresponding EC Declaration of Conformity along with the standards applied.				
	Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.				
C-Tick symbol	The measuring system meets the EMC requirements of the "Australian Communications and Media Authority (ACMA)".				
Ex approval	cCSA _{US}				
	The following hazardous area versions currently available:				
	NI				
	Class 1, Division 2, Groups A, B, C and D T4 or Class I, Zone 2 IIC T4				
Pressure Equipment Directive	The devices can be ordered with or without a PED approval. If a device with a PED approval is required, the must be explicitly stated in the order.				
	 With the PED/G1/x (x = category) marking on the sensor nameplate, Endress+Hauser confirms compliance with the "Essential Safety Requirements" specified in Annex I of the Pressure Equipment Directive 97/23/ EC. 				
	 Devices bearing this marking (PED) are suitable for the following types of medium: 				
	Media in Group 1 and 2 with a vapor pressure greater than, or smaller and equal to 0.5 bar (7.3 psi)				
	 Devices not bearing this marking (PED) are designed and manufactured according to good engineering practice. They meet the requirements of Art.3 Section 3 of the Pressure Equipment Directive 97/23/EC. The range of application is indicated in tables 6 to 9 in Annex II of the Pressure Equipment Directive. 				

Other standards and guidelines

EN 60529
Degrees of protecti

Degrees of protection provided by enclosures (IP code) EN 61010-1

- Protection Measures for Electrical Equipment for Measurement, Control, Regulation and Laboratory Procedures.
- IEC/EN 61326
 - Emission in accordance with Class A requirements. Electromagnetic compatibility (EMC requirements)
- NAMUR NE 21
- Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment.
- NAMUR NE 32
- Data retention in the event of a power failure in field and control instruments with microprocessors
- NAMUR NE 43 Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.
- NAMUR NE 53
- Software of field devices and signal-processing devices with digital electronics
- NAMUR NE 105
- Specifications for integrating fieldbus devices in engineering tools for field devices NAMUR NE 107
 - Status classification as per NE107

Ordering information

Your Endress+Hauser sales center can provide detailed ordering information and information on the extended order code.

Application packages

Package	Description
HistoROM extended function	Comprises extended functions concerning the event log and the activation of the measured value memory.
	 Event log: Memory volume is extended from 20 message entries (basic version) to up to 100 entries. Message entries are visualized via the local display or FieldCare.
	 Data logging (line recorder): Memory capacity for up to 1000 measured values is activated. 250 measured values can be output via each of the 4 memory channels. The recording interval can be defined and configured by the user. Data logging is visualized via the local display or FieldCare.

Accessories

Device-specific accessories	For the sensor	
	Accessories	Description
	F 1 1 1.1	
	Flow conditioner	For DN 40–50 (1½" – 2"), PN40, Cl 300 Order the t-mass A sensor and the flow conditioner together to ensure that they are calibrated together. Joint calibration guarantees optimum performance. Ordering the flow conditioner separately and using it with the device will further increase measurement uncertainty.
Communication-specific accessories	Accessories	Description

Commubox FXA195 HART	For intrinsically safe HART communication with FieldCare via the USB interface.
HART Loop Converter HMX50	Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values. For details, see "Technical Information" TI00429F and Operating Instructions BA00371F
Wireless HART adapter SWA70	Is used for the wireless connection of field devices. The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks with minimum cabling complexity. For details, see Operating Instructions BA00061S
Fieldgate FXA320	Gateway for the remote monitoring of connected 4-20 mA measuring devices via a Web browser. For details, see "Technical Information" TI00025S and Operating Instructions BA00053S
Fieldgate FXA520	Gateway for the remote diagnostics and remote configuration of connected HART measuring devices via a Web browser. For details, see "Technical Information" TI00025S and Operating Instructions BA00051S
Field Xpert SFX100	Compact, flexible and robust industry handheld terminal for remote configuration and for obtaining measured values via the HART current output (4-20 mA).
Commubox FXA291	Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop.

Service-specific accessories	Accessories	Description
	Applicator	 Software for selecting and sizing Endress+Hauser measuring devices: Calculation of all the necessary data for identifying the optimum flowmeter: e.g. nominal diameter, pressure loss, accuracy or process connections. Graphic illustration of the calculation results
		Administration, documentation and access to all project-related data and parameters over the entire life cycle of a project.
		 Applicator is available: Via the Internet: https://wapps.endress.com/applicator On CD-ROM for local PC installation.
	W@M	Life cycle management for your plant W@M supports you with a wide range of software applications over the entire process: from planning and procurement, to the installation, commissioning and operation of the measuring devices. All the relevant device information, such as the device status, spare parts and device-specific documentation, is available for every device over the entire life cycle. The application already contains the data of your Endress+Hauser device. Endress+Hauser also takes care of maintaining and updating the data records.
		W@M is available:Via the Internet: www.endress.com/lifecyclemanagementOn CD-ROM for local PC installation.

 FieldCare
 FDT-based plant asset management tool from Endress+Hauser. It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.

 Image: Components
 Accessories

 Description

 Memograph M graphic display recorder
 The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring

essories	Description
mograph M graphic vlay recorder	The Memograph M graphic data manager provides information on all the relevant measured variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.
	\fboxi For details, see "Technical Information" TI00133R and Operating Instructions BA00247R

Documentation

•

- The following document types are available:
- On the CD-ROM supplied with the device
 - In the Download Area of the Endress+Hauser Internet site: www.endress.com \rightarrow Download

Standard documentation	Device type	Communication	Document type	Documentation code
	6AAB**-		Brief Operating Instructions	KA01103D
		HART	Operating Instructions	BA01042D

Supplementary device- dependent documentation	Device type	Document type	Approval	Documentation code
	6AAB**-	Information on the Pressure Equipment Directive		
		Installation Instructions		Specified for each individual accessory $(\rightarrow \geqq 30)$

Registered trademarks

HART®

Registered trademark of the HART Communication Foundation, Austin, USA

Applicator[®], FieldCare[®], Field XpertTM, HistoROM[®]

Registered or registration-pending trademarks of the Endress+Hauser Group

Instruments International

Endress+Hauser Instruments International AG Kaegenstrasse 2 4153 Reinach Switzerland

Tel.+41 61 715 81 00 Fax+41 61 715 25 00 www.endress.com info@ii.endress.com

