
67888

Programmable HMI Indicator/Controller
Version 5.00

Programming Reference

To be the best by every measure

Contents

About This Manual ... 1
1.0 Introduction.. 1

1.1 What is iRite?. 1
1.2 Why iRite? . 1
1.3 About iRite Programs. 1
1.4 Running Your Program . 2
1.5 Sound Programming Practices . 3
1.6 Summary of Changes . 4

2.0 Tutorial ... 5
2.1 Getting Started . 5
2.2 Program Example with Constants and Variables . 6

3.0 Language Syntax.. 10
3.1 Lexical Elements . 10

3.1.1 Identifiers . 10
3.1.2 Keywords . 10
3.1.3 Constants . 10
3.1.4 Delimiters . 11

3.2 Program Structure . 13
3.3 Declarations. 15

3.3.1 Type Declarations . 15
3.3.2 Variable Declarations . 18
3.3.3 Subprogram Declarations . 19

3.4 Statements . 21
3.4.1 Assignment Statement . 21
3.4.2 Call Statement . 22
3.4.3 If Statement . 23
3.4.4 Loop Statement . 25
3.4.5 Return Statement . 27
3.4.6 Exit Statement . 27

4.0 Built-in Types ... 28
5.0 API Reference .. 31

5.1 Scale Data Acquisition . 31
5.1.1 Weight Acquisition . 31
5.1.2 Tare Manipulation . 33
5.1.3 Rate of Change. 34
5.1.4 Accumulator Operations . 35
5.1.5 Scale Operations . 37
5.1.6 A/D and Calibration Data . 41

5.2 System Support. 42
5.3 Serial I/O . 49
5.4 Program Scale. 52
5.5 Setpoints and Batching . 52
5.6 Digital I/O Control . 62

© 2012 Rice Lake Weighing Systems. All rights reserved. Printed in the United States of America.
Specifications subject to change without notice.

Rice Lake Weighing Systems is an ISO 9001 registered company.
Version 5.00, April 2012

ii 920i Programming Reference

Rice Lake continually offers web-based video training on a growing selection
of product-related topics at no cost. Visit www.ricelake.com/webinars.

5.7 Fieldbus Data . 63
5.8 Analog Output Operations . 65
5.9 Pulse Input Operations . 65
5.10 Display Operations . 66
5.11 Display Programming . 67
5.12 Event Handlers. 70
5.13 Database Operations . 71
5.14 Timer Controls . 73
5.15 Mathematical Operations . 75
5.16 Bit-wise Operations . 76
5.17 Built-in Types . 76
5.18 String Operations . 78
5.19 Data Conversion . 79
5.20 High Precision . 79
5.21 USB . 81

6.0 Appendix .. 85
6.1 Event Handlers . 85
6.2 Compiler Error Messages . 86
6.3 iRev Database Operations . 88

6.3.1 Uploading . 88
6.3.2 Exporting . 88
6.3.3 Importing . 88
6.3.4 Clearing . 89
6.3.5 Downloading. 89

6.4 Fieldbus User Program Interface . 89
6.5 Program to Retrieve 920i Hardware Configuration . 90
6.6 920i User Graphics . 92

API Index.. 94

920i Programming Reference - Introduction 1

About This Manual
This manual is intended for use by programmers who
write iRite applications for 920i® digital weight
indicators.

This manual applies to Version 4.01 and later of the
920i indicator software and should be used in
conjunction with the Version 4.01 920i Installation
Manual, PN 67887. See that manual for detailed
descriptions of indicator capability and operation.

Warning

All programs should be thoroughly
tested before implementation in a live
system. To prevent personal injury and
equipment damage, software-based
interrupts must always be
supplemented by emergency stop
switches and other safety devices
necessary for the application.

Author ized d i s t r ibu to rs and the i r
employees can view or download this
manual from the Rice Lake Weighing
S y s t e m s d i s t r i b u t o r s i t e a t
www.ricelake.com.

1.0 Introduction

1.1 What is iRite?
iRite is a programming language developed by Rice
Lake Weighing Systems and used for the purpose of
programming the 920i programmable indicator.
Similar to other programming languages, iRite has a
set of rules, called syntax, for composing instructions
in a format that a compiler can understand.

An iRite program is nothing more than a text file,
which contains statements composed following the
iRite language syntax. The text file created using the
iRite programming language isn’t much use until it is
compiled. Compiling is done using a compiler
program.

The compiler reads the text file written in iRite and
translates the program’s intent into commands that are
understandable to the 920i’s serial interface. In
addition, with an ample amount of appropriate
commen t s , t he s ame i R i t e p rog ram tha t i s
understandable to the compiler should also relate, to
any person reading the file, what the program is meant
to accomplish.

1.2 Why iRite?
Although there are many different programming
languages already established in the programming
world, some of which you may already be familiar
with, none of them were "the right tool for the job."

Most other programming languages are very general
and try to maximize flexibility in unknown or
unforeseen applications; hence they carry a lot of
overhead and functionality that the 920i programmer
might not ever use.

Considering the varying backgrounds and experiences
of the people that will be doing most of the iRite
programming, we wanted a language that was easy to
learn and use for the first-time programmer, but also
familiar in syntax to an experienced programmer.
Furthermore, we wanted to eliminate some of the
unnecessary features that are troublesome in other
languages, namely the pointer data type. In addition,
we added some items that are very useful when
programming the 920i, the database data type and the
handler subprogram, for example.

Also by creating a new language, we had the luxury of
picking the best features from other languages, with
the advantage of hindsight. The result is iRite: a
compact language (only six discrete statement types,
three data types) with a general syntax similar to
Pascal and Ada, the string manipulation of Basic, and
a rich set of function calls and built-in types specific
to the weighing and batching industry. A Pascal-like
syntax was adopted because Pascal was originally
developed as a teaching language and its syntax is
unambiguous.

1.3 About iRite Programs
The 920i indicator has, at any given moment, many
time critical tasks it must accomplish. It is always
calculated new weight from new analog information,
updating the display, watching for key press events,
running the setpoint engine, watching for serial input,
streaming weight data, or sending print data out one or
more serial ports. In addition to these tasks, it also
runs user programmed custom event handlers, i.e. an
iRite program.

2 920i Programming Reference

Writing custom event handlers is what iRite is for.
Each of the 920i tasks share processor time, but some
tasks have higher priorities than other tasks. If a low
priority task is taking more than its share of processor
time, it will be suspended so a higher priority task can
be given processor time when it needs it. Then, when
all the other higher priority tasks have completed, the
low priority task will be resumed.

Gathering analog weight signals and converting it to
weight data is the 920i’s highest priority. Running a
user-defined program has a very low priority.
Streaming data out a serial port is the lowest priority
task , because of i t s minimal computa t iona l
requirements. This means that if your iRite program
"hangs", the task of streaming out the serial ports will
never get any CPU time and streaming will never
happen. An example of interrupting a task would be if
a user program included an event handler for SP1Trip
(Setpoint 1 Trip Event) and this event "fired".

Let’s assume the logic for the SP1Trip event is
executing at a given moment in time. In this example,
the programmer wanted to display the message
"Setpoint 1 Tripped" on the display. If the SP1Trip
event logic doesn’t complete by the time the 920i
needs to calculate a new weight, for example, the
SP1Trip handler will be interrupted immediately, a
new weight will be calculated, and the SP1Trip event
wi l l resume execut ing exact ly where i t was
interrupted. In most circumstances, this happens so
quickly the user will never know that the SP1Trip
handler was ever interrupted.

How Do I write and Compile iRite Programs?
Templates and sample programs are available from
RLWS to provide the skeleton of a working program.
Once you have the iRev Editor open, you are ready to
start writing a program. iRite source files are named
with the .src extension.

In addition to writing .src files you may write include
files with an extension .iri. The iRite language doesn’t
have the ability to include files, but when using iRev
you can. An include file can be helpful in keeping
your .src program from getting cluttered with small
unrelated functions and procedures that get used in
many different programs. For example, you could
create a file named math.iri and put only functions
that perform some kind of math operation not
supported in the iRite library already. When the
program is compiled through iRev, the .iri file is
placed where you told it to be placed in iRev. Because
iRite enforces "declaration before use", the iri file
needs to be placed before any of the subprograms in
your .src file.

When you are ready to compile your program, use the
"Compile" feature from the "Tools" menu in the iRev
Editor. If the program compiles without errors a new
text file is created. This new text file has the same
name but an extension of .cod. The new file named
your_program.cod is a text file containing commands
that can be sent to the 920i via an RS232 serial
communication connection between your computer
and the 920i. Although the .cod file is a text file, most
of it will not be understandable. There is really no
reason to edit the .cod file and we strongly discourage
doing so.

How Do I Get My Program into the 920i?
The 920i indicator must be in configuration mode
before the .cod file can be sent. The easiest way to
send the .cod file to the 920i is to use iRev. You can
use the Send .COD file to Indicator option under the Tools
menu in the iRev Editor, or you can send the .cod file
d i r e c t l y f r o m i R e v by u s ing t h e D o w n l o a d
Configuration… selection on the Communications menu
and specifying that you want to send the .cod file.

If the 920i indicator is not in configuration mode, iRev
will pop-up a message informing you of this
condition. It is strongly recommended that you use
iRev or the iRev Editor to send the compiled program
to the 920i. This method implements error checking
on each string sent to the indicator and helps protect
from data transmission errors corrupting the program.

1.4 Running Your Program
A program written for the 920i is simply a collection
of one or more custom event handlers and their
supporting subprograms. A custom event handler is
run whenever the associated event occurs. The
ProgramStartup event is called whenever the indicator
is powered up, is taken out of configuration mode, or
is sent the RS ser ia l command. I t should be
straightforward when the other event handlers are
called. For example, the DotKeyPressed event handler
is called whenever the "." key is pressed.

All events have built-in intrinsic functionality
associated with them, although, the intrinsic
functionality may be to do nothing. If you write a
custom event handler for an event, your custom event
handler will be called instead of the intrinsic function,
and the default action will be suppressed.

920i Programming Reference - Introduction 3

For example, the built-in intrinsic function of the
UNITS key is to switch between primary, secondary,
and tertiary units. If the handler UnitsKeyPressed was
defined in a user program, then the UNITS key no
longer switches between primary, secondary, and
tertiary units, but instead does whatever is written in
the handler UnitsKeyPressed. The ability to turn off the
custom event handler and return to the intrinsic
functionality is provided by the DisableHandler
function.

It is important to note that only one event handler can
be running at a time. This means that if an event
occurs while another event handler is running, the
new event will not be serviced immediately but
instead will be placed in a queue and serviced after the
current event is done executing.

This means that if you are executing within an infinite
loop in an event handler, then no other event handlers
will ever get serviced. This doesn’t mean that the
indicator will be totally locked-up: The 920i will still
be executing its other tasks, like calculating current
weights, and running the setpoint engine. But it will
not run any other custom event handlers while one
event is executing in an infinite loop.

There are some fatal errors that an iRite program can
make that will completely disable the 920i. Some of
these errors are "…divide by zero", "string space
exhausted", and "array bounds violation". When they
occur, the 920i stops processing and displays a fatal
error message on the display. Power must be cycled to
reset the indicator.

After the indicator has been restarted, it should be put
into setup mode, and a new version (without the fatal
error) of the iRite program should be loaded. If you
are unfortunate enough to program a fatal error in
your ProgramStartup Handler, then cycling power to
the unit will only cause the ProgramStartup Handler to
be run again and repeat the fatal error.

I n t h i s c a se you mus t pe r fo rm a
RESETCONFIGURATION. Your program, along
with the configuration, will be erased and set to the
defaults. This will allow you to reload your iRite
program after you have corrected the code that
generated the fatal error and re-compiled the program.

1.5 Sound Programming Practices
The most important thing to remember about writing
source code is that i t has two very important
funct ions: i t must work, and i t must clear ly
communicate how it works. At first glance, especially
to a beginning programmer, it may seem that getting
the program to work is more important than clearly
commenting and documenting how it works.

As a professional programmer, you will realize that a
higher quality product is produced, which is less
costly to maintain, when the source code is well
d o c u m e n t e d . Yo u , s om e b o d y e l s e a t y o u r
organization, the customer, or RLWS Support
Personnel, may need to look at some iRite source
code, months or years from now, long after the
original author has forgotten how the program worked
or isn’t around to ask. This is why we advocate
programming to a specific standard. The template
programs, example programs, and purchased custom
programs that are available from RLWS follow a
single standard. You are welcome to download this
standard from our website, or you can write your own.

The purpose of a standard is to document the way all
programmers will create software for the 920i
indicator. When the standard is followed, the source
code will be easy to follow and understand. The
standard will document: the recommended style and
form for module, program, and subprogram headers,
proper naming conventions for variables and
functions, guidelines for function size and purpose,
commenting guidelines, and coding conventions.

4 920i Programming Reference

1.6 Summary of Changes
This manual has been updated to include APIs and
handlers available in Version 4.01 of the 920i
indicator software. Changes to this manual include the
following:

• The list of built-in types described in the
system.src f i le has been updated (see
Section 4.0 on page 28).

• The API reference in Section 5.0 on page 31
includes several new APIs.

• The examples section of the previous edition
has been removed. Please see the 920i
Support page at www.ricelake.com for
downloadable program examples.

• Several new sections have been added to the
appendix (see Section 6.0), including: “iRev
Database Operations” on page 88, “Fieldbus
User Program Inter face” on page 89,
“Program to Retr ieve 920i Hardware
Configuration” on page 90, and “920i User
Graphics” on page 92.

920i Programming Reference - Tutorial 5

2.0 Tutorial

2.1 Getting Started
Traditionally, the first program a programmer writes
in every language is the famous “Hello World!”
program. Being able to write, compile, download, and
run even the simple “Hello World!” program is a
major milestone. Once you have accomplished this,
the basics components will be in place, and the door
will be open for you and your imagination to start
writing real world solutions to some challenging
tasks.

Here is the “Hello World!” program in iRite:

01 program HelloWorld;
02
03 begin
04 DisplayStatus("Hello, world!");
05 end HelloWorld;

This program will display the text Hello, world! on the
920i’s display in the status message area, every time
the indicator is turned on, taken out of configuration
mode, or reset. Let’s take a closer look at each line of
the program.

Line 1: program HelloWorld;

The first line is the program header. The program
header consists of the keyword program followed by
the name of the program. The name of the program is
arbitrary and made up by the programmer. The
program name; however, must follow the identifier
naming rules (i.e. an identifier can’t start with a
number or contain a space).

The second line is an optional blank line. Blank lines
can be placed anywhere in the program to separate
important lines and to make the program easier to read
and understand.

Line 3: begin

The begin keyword is the start of the optional main
code body. The optional main code body is actually
t h e P ro g ram Sta r t up even t hand l e r. The
ProgramStartup handler is the only event handler that
doesn’t have to be specifically named.

Line 4:

DisplayStatus("Hello, world!");

The statement DisplayStatus("Hello,
world!") is the only statement in the main code
body. I t i s a ca l l t o t he bu i l t - i n p rocedure
DisplayStatus with the string constant “Hello, world!”
passed as a parameter. The result is the text, "Hello,
world!" will be shown in the status area of the display
(lower left corner), whenever the startup event is fired.

Line 5: end HelloWorld;

The keyword end followed by the same identifier for
the program name used in line one, HelloWorld, is
required to end the program.

From this analysis, you may have gathered that only
the first and last lines were required. This is true, the
program would compile, but it would do nothing and
be totally useless. At a minimum, a working program
must have at least one event handler, though it doesn’t
have to be the ProgramStartup handler. We could have
written the HelloWorld program to display “Hello,
world!” whenever any key on the keypad was pressed.
It would look like this:

01 program HelloWorld;
02
03 handler KeyPressed;
04 begin
05 DisplayStatus("Hello, world!");
06 end;
07
08 end HelloWorld;

In this version, we chose to use the KeyPressed event
handler to call the DisplayStatus procedure. The
KeyPressed event will fire any time any key on the
keypad is pressed. Also notice that the begin keyword
that started the main code body, and the DisplayStatus
call have been removed and replaced with the four
lines making up the KeyPressed event handler
definition.

Using the iRev Editor, write the original version of the
“Hello, world!” program on your system. After you
have compiled the program successfully, download it
to your 920i. After the program has been downloaded
and the indicator is put back in run mode, then the text
Hello, world! should appear on the display.

6 920i Programming Reference

2.2 Program Example with Constants and Variables
The “Hello, world!” program didn’t use any explicitly declared constants or variables (the string “Hello, world!”
is actually a constant, but not explicitly declared). Most useful programs use many constants and variables. Let’s
look at a program that will calculate the area of a circle for various length radii. The program, named
“PrintCircleAreas”, is listed below.

01 program PrintCircleAreas;
02
03 -- Declare constants and aliases here.
04 g_ciPrinterPort : constant integer := 2;
05
06 -- Declare global variables here.
07 g_iCount : integer := 1;
08 g_rRadius : real;
09 g_rArea : real;
10 g_sPrintText: string;
11
12
13 function CircleArea(rRadius : real) : real;
14 crPie : constant real := 3.141592654;
15 begin
16 -- The area of a circle is defined by: area = pie*(r^2).
17 return (crPie * rRadius * rRadius);
18 end;
19
20
21 begin
22
23 for g_iCount := 1 to 10
24 loop
25
26 g_rRadius := g_iCount;
27 g_rArea := CircleArea(g_rRadius);
28
29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);
31
32 WriteLn(g_ciPrinterPort, g_sPrintText);
33
34 end loop;
35
36 end PrintCircleAreas;

The PrintCircleAreas program demonstrates variables and constants as well as introducing these important ideas:
for loop, assignment statement, function declarations, function calling and return parameters, string
concatenation, WriteLn procedure, a naming convention, comments, and a couple of data conversion functions.

You probably know by now that this program will calculate the areas of circles with radius from 1 to 10
(counting by 1s) and send text like, “The area of a circle with radius 1 is 3.14,” once for each radius, out the
communication port 2.
01 program PrintCircleAreas;

Line 1 is the program header with the keyword program and the program identifier “PrintCircleAreas”. This is
the same in theory as the “HelloWorld” program header.

Line 3 is a comment. In iRite all comments are started with a -- (double dash). All text after the double dash up
to the end of the line is considered a comment. Comments are used to communicate to any reader what is going
on in the program on the specific lines with the comment or immediately following the comment. The -- can
start on any column in a line and can be after, on the same line, as other valid program statements.

920i Programming Reference - Tutorial 7

Line 4 is a global constant declaration for the communication port that a printer may be connected to. This simple
line has many important parts:
04 g_ciPrinterPort : constant integer := 2;

First, an identifier name is given. Identifier names are made up by the programmer and should accurately
describe what the identifier is used for. In the name g_ciPrinterPort the “PrinterPort” part tells us that this
identifier will hold the value of a port where a printer should be connected. The “g_ci” is a prefix used to
describe the type of the identifier. When “g_ciPrinterPort” is used later on in the program, the prefix may help
someone reading the program, even the program’s author, to easily determine the identifier’s data type without
having to look back at the declaration.

The “g_” in the prefix helps tell us that the identifier is “global”. Global identifiers are declared outside of any
subprogram (handler, function, procedure) and have global scope. The term “scope” refers to the region of the
program text in which the identifier is known and understood. The term “global” means that the identifier is
“visible” or “known” everywhere in the program. Global identifiers can be used within an event handler body, or
any procedure or function body. Global identifiers also have “program duration”. The duration of an identifier
refers to when or at what point in the program the identifier is understood, and when their memory is allocated
and freed. Identifiers with global duration, in a 920i program, are understood in all text regions of the program,
and their memory is allocated at program start-up and is re-allocated when the indicator is powered up.

The “c” in the prefix helps us recognize that the identifier is a constant. Constants are a special type of identifier
that are initialized to a specific value in the declaration and may not be changed anytime or anywhere in the
program. Constants are declared by adding the keyword constant before the type.

Constants are very useful and make the program more understandable. In this example, we defined the printer
port as port 2. If we would have just used the number 2 in the call to WriteLn, then a reader of the program would
not have any idea that the programmer intended a printer to be connected to the 920i’s port 2.

Also, in a larger program, port 2 may be used hundreds of times in Write and WriteLn calls. Then, if it were
decided to change the printer port from port 2 to port 3, hundreds of changes would have to be made. With port 2
being a constant, only one change in the declaration of g_ciPrinterPort would be required to change the printer
port from 2 to 3.

The type of the constant is an integer. The “i” in the prefix helps us identify g_ciPrinterPort as an integer. The
keyword integer follows the keyword constant and specifies the type compatibility of the identifier as an integer
and also determines how much memory will be required to store the value (a value of 2 in this example). In the
iRite programming language, there are only 3 basic data types: integer, real and string.

The initialization of the constant is accomplished with the “:= 2” part of the statement. Initialization of constants
is done in the declaration, with the assignment operator, :=, followed by the initial value.

Finally, the statement is terminated by a semicolon. The “;” is used in iRite and other languages as a statement
terminator and separator. Every statement must be terminated with a semicolon. Don’t read this to mean “every
line must end in a semicolon”; this is not true. A statement may be written on one line, but it is usually easier to
read if the statement is broken down into enough lines to make some keywords stand out and to keep the length
of each line less than 80 characters.

Some statements contain one or more other statements. In our example, the statement:
g_ciPrinterPort : constant integer := 2;
is an example of a simple statement that easily fit on one line of code. The loop statement in the program startup
handler (main code body) is spread out over several lines and contains many additional statements. It does,
however, end with line end loop;, and ends in a semicolon.
06 -- Declare global variables here.
07 g_iCount : integer := 1;
08 g_rRadius : real;
09 g_rArea : real;
10 g_sPrintText: string;

Line 6 is another comment to let us know that the global variables are going to be declared.

8 920i Programming Reference

Lines 7—10 are global variable declarations. One integer, g_iCounter, two reals, g_rRadius and g_rArea, and
one string, g_sPrintText, are needed during the execution of this program. Like the constant g_ciPrinterPort,
these identifiers are global in scope and duration; however, they are not constants. They may have an optional
initial value assigned to them, but it is not required. Their value may be changed any time they are “in scope”,
they may be changed in every region of the program anytime the program is loaded in the 920i.

Lines 13—18 are our first look at a function declaration. A function is a subprogram that can be invoked (or
called) by other subprograms. In the PrintCircleAreas program, the function CircleArea is invoked in the
program startup event handler. The radius of a circle is passed into the function when it is invoked. In iRite there
are three types of subprograms: functions, procedures, and handlers.
13 function CircleArea(rRadius : real) : real;
14 crPie : constant real := 3.141592654;
15 begin
16 -- The area of a circle is defined by: area = pie*(r^2).
17 return (crPie * rRadius * rRadius);
18 end;

On line 13, the function declaration starts with the keyword function followed by the function name. The
function name is an identifier chosen by the programmer. We chose the name “CircleArea” for this function
because the name tells us that we are going to return the area of a circle. Our function CircleArea has an optional
formal arguments (or parameters) list. The formal argument list is enclosed in parenthesis, like this: (rRadius
: real). Our example has one argument, but functions and procedures may have zero or more.

Argument declarations must be separated by a semicolon. Each argument is declared just like any other variable
declaration: starting with an identifier followed by a colon followed by the data type. The exception is that no
initialization is allowed. Initialization wouldn’t make sense, since a value is passed into the formal argument
each time the function is called (invoked).

The rRadius parameters are passed by value. This means that the radius value in the call is copied in rRadius. If
rRadius is changed, there is no effect on the value passed into the function. Unlike procedures, functions may
return a value. Our function CircleArea returns the area of a circle. The area is a real number. The data type of the
value returned is specified after the optional formal argument list. The type is separated with a colon, just like in
other variable declarations, and terminated with a semicolon.

Up to this point in our program, we have only encountered global declarations. On line 14 we have a local
declaration. A local declaration is made inside a subprogram and its scope and duration are limited. So the
declaration: crPie : constant real := 3.141592654; on line 14 declares a constant real named
crPie with a value of 3.141592654. The identifier crPie is only known—and only has meaning—inside the text
body of the function CircleArea. The memory for crPie is initialized to the value 3.141592654 each time the
function is called.

Line 15 contains the keyword begin and signals the start of the function code body. A function code body
contains one or more statements.

Line 16 is a comment that explains what we are about to do in line 17. Comments are skipped over by the
compiler, and are not considered part of the code. This doesn’t mean they are not necessary; they are, but are not
required by the compiler.

Every function must return a value. The value returned must be compatible with the return type declared on line
14. The keyword return followed by a value, is used to return a value and end execution of the function. The
return statement is always the last statement a function runs before returning. A function may have more than
one return statement, one in each conditional execution path; however, it is good programming practice to have
only one return statement per function and use a temporary variable to hold the value of different possible return
values.

The function code body, or statement lists, is terminated with the end keyword on line 18.

In this program we do all the work in the program startup handler. We start this unnamed handler with the begin
keyword on line 21.
23 for g_iCount := 1 to 10
24 loop

920i Programming Reference - Tutorial 9

25
26 g_rRadius := g_iCount;
27 g_rArea := CircleArea(g_rRadius);
28
29 g_sPrintText := "The area of a circle with radius " + RealToString(g_rRadius, 4, 1)
30 + " is " + RealToString(g_rArea, 7, 2);
31
32 WriteLn(g_ciPrinterPort, g_sPrintText);
33
34 end loop;

On line 23 we see a for loop to start the first statement in the startup handler. In iRite there are two kinds of
looping constructs. The for loop and the while loop. For loops are generally used when you want to repeat a
section of code for a predetermined number of times. Since we want to calculate the area of 10 different circles,
we chose to use a for loop.

For loops use an optional iteration clause that starts with the keyword for followed by the name of variable,
followed by an assignment statement, followed by the keyword to, then an expression, and finally an optional
step clause. Our example doesn’t use a step clause, but instead uses the implicit step of 1. This means that lines
26 through 32 will be executed ten times. The first time g_iCount will have a value of 1, and during the last
iteration, g_iCount will have a value of 10.

All looping constructs (the for and the while) start with the keyword loop and end with the keywords end loop,
followed by a semicolon. In our example, loop is on line 24 and end loop is on line 34. In between these two, are
found, the statements that make up the body of the loop.

Line 26 is an assignment of an integer data type into a real data type. This line is unnecessary and the assignment
could have been made automatically if the integer g_iCount was passed into the function CircleArea directly on
line 27, since CircleArea is expecting a real value. Calls to functions like CircleArea are usually done in an
assignment statement if the functions return value need to be used later in the program. The return value of
CircleArea (the area of a circle with radius g_rRadius) is stored in g_rArea.

The assignment on lines 29 and 30 uses two lines strictly for readability. This single assignment statement does
quite a bit. We are trying to create a string of plain English text that will say: “The area of a circle with
radius xx.x is yyyy.yy”, where the radius value will be substituted for xx.x and the calculated area will
be substituted for yyyy.yy. The global variable g_sPrintText is a string data type. The constants (or literals):
“The area of a circle with radius ” and “ is ” are also strings.

However, g_rRadius and g_iArea are real values. We had to use a function from the API to convert the real
values to strings. The API function RealToString is passed a real and a width integer and a precision integer. The
width parameter specifies the minimum length to reserve in the string for the value. The precision parameter
specifies how many places to report to the right of the decimal place. To concatenate all the small strings into one
string we use the string concatenation operator, “+”.

Finally, we want to send the new string we made to a printer. The Write and WriteLn procedures from the API
send text data to a specified port. Earlier in the program we decided the printer port will be stored in
g_ciPrinterPort. So the WriteLn call on line 32 send the text stored in g_sPrintText, followed by a carriage return
character, out port 2.

If we had a printer connected to port 2 on the 920i, every time the program startup handler is fired, we would see
the following printed output:

The area of a circle with radius 1.0 is 3.14
The area of a circle with radius 2.0 is 12.57
The area of a circle with radius 3.0 is 28.27
The area of a circle with radius 4.0 is 50.27
The area of a circle with radius 5.0 is 78.54
The area of a circle with radius 6.0 is 113.10
The area of a circle with radius 7.0 is 153.94
The area of a circle with radius 8.0 is 201.06
The area of a circle with radius 9.0 is 254.47
The area of a circle with radius 10.0 is 314.16

10 920i Programming Reference

3.0 Language Syntax

3.1 Lexical Elements
3.1.1 Identifiers
An identifier is a sequence of letters, digits, and underscores. The first character of an identifier must be a letter
or an underscore, and the length of an identifier cannot exceed 100 characters. Identifiers are not case-sensitive:
“HELLO” and “hello” are both interpreted as “HELLO”.

Examples:
Valid identifiers: Variable12

_underscore
Std_Deviation

Not valid identifiers: 9abc First character must be a letter or an underscore.
ABC DEF Space (blank) is not a valid character in an identifier.

Identifiers are used by the programmer to name programs, data types, constants, variables, and subprograms. You
can name your identifiers anything you want as long as they follow the rules above and the identifiers is not
already used as a keyword or as a built-in type or built-in function. Identifiers provide the “name” of an entity.
Names are bound to program entities by declarations and provide a simple method of entity reference. For
example, an integer variable iCounter (declared iCounter : integer) is referred to by the name iCounter.

3.1.2 Keywords
Keywords are special identifiers that are reserved by the language definition and can only be used as defined by
the language. The keywords are listed below for reference purposes. More detail about the use of each keyword
is provided later in this manual.

and array begin builtin constant database

else elsif end exit for function

handler if integer is loop mod

not of or procedure program real

record return step stored string then

to type var while

3.1.3 Constants
Constants are tokens representing fixed numeric or character values and are a necessary and important part of
writing code. Here we are referring to constants placed in the code when a value or string is known at the time of
programming and will never change once the program is compiled. The compiler automatically figures out the
data type for each constant.

Note
Be careful not to confuse the constants in this discussion with identifiers declared with the keyword
constant, although they may both be referred to as constants.

Three types of constants are defined by the language:

Integer Constants: An integer constant is a sequence of decimal digits. The value of an integer constant is
limited to the range 0…231 – 1. Any values outside the allowed range are silently truncated.

Literally, any time a whole number is used in the text of the program, the compiler creates an integer constant.
The following gives examples of situations where an integer constant is used:

iCount : integer := 25;
for iIndex := 1 to 3
sResultString := IntegerToString(12345);
sysResult := StartTimer(4);

920i Programming Reference - Language Syntax 11
To be the best by every measure

Real Constants:A real constant is an integer constant immediately followed by a decimal point and another
integer constant. Real constants conform to the requirements of IEEE-754 for double-precision floating point
values. When the compiler “sees” a number in the format n.n then a real constant is created. The value .56 will
generate a compiler error. Instead compose real constants between –1 and +1 with a leading zero like this: 0.56
and –0.667. The following gives examples of situations where a real constant is used:

rLength := 9.25;
if rValue <= 0.004 then
sResultString := RealToString(98.765);
rLogResult := Log(345.67);

String Constants:A string constant is a sequence of printable characters delimited by quotation marks (double
quotes, " "). The maximum length allowed for a string constant is 1000 characters, including the delimiters.
The following gives examples of situations where a string constant (or string literal) is used:

sUserPrompt := "Please enter the maximum barrel weight:";
WriteLn(iPrinter, "Production Report (1st Shift));
if sUserEntry = "QUIT" then
 DisplayStatus("Thank You!");

3.1.4 Delimiters
Delimiters include all tokens other than identifiers and keywords, including the arithmetic operators listed below:

>= <= <> := <> = + – * /

. , ; : () [] "

Delimiters include all tokens other than identifiers and keywords. Below is a functional grouping of all of the
delimiters in iRite.

Punctuation

Parentheses
() (open and close parentheses) group expressions, isolate conditional expressions, and indicate function
parameters:

iFarenheit := ((9.0/5.0) * iCelcius) + 32; -- enforce proper precedence
if (iVal >= 12) and (iVal <= 34) or (iMaxVal > 200) -- conditional expr.
EnableSP(5); -- function parameters

Brackets
[] (open and close brackets) indicate single and multidimensional array subscripts:

type CheckerBoard is array [8, 8] of recSquare;
iThirdElement := aiValueArray[3];

Comma
The comma(,) separates the elements of a function argument list and elements of a multidimensional array:

type Matrix is array [4,8] of integer;
GetFilteredCount(iScale, iCounts);

Semicolon
The semicolon (;) is a statement terminator. Any legal iRite expression followed by a semicolon is interpreted as
a statement. Look around at other examples, it’s used all over the place.

Colon
The colon (:) is used to separate an identifier from its data type. The colon is also used in front of the equal sign
(=) to make the assignment operator:

function GetAverageWeight(iScale : integer) : real;
iIndex : integer;
csCopyright : constant string := "2002 Rice Lake Weighing Systems";

12 920i Programming Reference

Quotation Mark
Quotation marks ("") are used to signal the start and end of string constants:

if sCommand = "download data" then
 Write(iPCPort, "Data download in progress. Please wait…");

Relational Operators
Greater than (>)

Greater than or equal to (>=)

Less than (<)

Less than or equal to (<=)

Equality Operators
Equal to (=)

Not equal to (<>)

The relational and equality operators are only used in an if expression. They may only be used between two
objects of compatible type, and the resulting construct will be evaluated by the compiler to be either true or false;

if iPointsScored = 6 then
if iSpeed > 65 then
if rGPA <= 3.0 then
if sEntry <> "2" then

Note

Note
Be careful when using the equal to (=) operator with real data. Because of the way real data is
stored and the amount of precision retained, it may not contain what you would expect. For
example, given a real variable named rTolerance:

rTolerance := 10.0 / 3.0
…
if rTolerance * 3 = 10 then

-- do something
end if;

The evaluation of the if statement will resolve to false. The real value assigned to rTolerance by the
expression 10.0 / 3.0 will be a real value (3.333333) that, when multiplied by 3, is not quite equal to
10.

Logical Operators
Although they are keywords and not delimiters, this is a good place to talk about “Logical Operators”. In iRite
the logical operators are and, or, and not and are named “logical and”, “logical or”, and “logical negation”
respectively. They too are only used in an if expression. They can only be used with expressions or values that
evaluate to true or false:

if (iSpeed > 55) and (not flgInterstate) or (strOfficer = "Cranky") then
 sDriverStatus := "Busted";

Arithmetic Operators
The arithmetic operators (+, – ,* , /, and mod) are used in expression to add, subtract, multiply, and divide integer
and real values. Multiplication and division take precedence over addition and subtraction. A sequence of
operations with equal precedence is evaluated from left to right.

The keyword mod is not a delimiter, but is included here because it is also an arithmetic operator. The modulus
(or remainder) operator returns the remainder when operand 1 is divided by operand 2. For example:

rResult : 7 mod 3; -- rResult should equal 1

Note
Both division (/) and mod operations can cause the fatal divide-by-zero error if the second operand is
zero.

920i Programming Reference - Language Syntax 13
To be the best by every measure

When using the divide operator with integers, be careful of losing significant digits. For example, if you are
dividing a smaller integer by a larger integer then the result is an integer zero: 4/7 = 0. If you were hoping to
assign the result to a real like in the following example:

rSlope : real;
rSlope := 4/7;

rSlope will still equal 0, not 0.571428671 as might be expected. This is because the compiler does integer math
when both operands are integers, and stores the result in a temporary integer. To make the previous statement
work in iRite, one of the operands must be a real data type or one of the operands must evaluate to a real. So we
could write the assignment statement like:

rSlope := 4.0/7;

If we were dividing two integer variables, we could multiply one of the operands by 1.0 to force the compile to
resolve the expression to a real:

rSlope : real;
iRise : integer := 4;
iRun : integer := 7;

rSlope := (iRise * 1.0) / iRun;

Now rSlope will equal 0.571428671.

Note
The plus sign (+) is also used as the string concatenation operator. The minus sign (–) is also used as a
unary minus operator that has the result equal to the negative of its operand.

Assignment Operator (:=)
The assignment operator is used to assign a value to a compatible program variable or to initialize a constant. The
value on the left of the “:=” must be a modifiable value. The following are some invalid examples:

3 := 1 + 1; -- not valid
ciMaxAge := 67; -- where ciMaxAge was declared with keyword constant
iInteger := "This is a string, not an integer!"; -- incompatible types

Structure Member Operator (“dot”)
The “dot” (.) is used to access the name of a field of a record or database types.

3.2 Program Structure
A program is delimited by a program header and a matching end statement. The body of a program contains a
declarations section, which may be empty, and an optional main code body. The declaration section and the main
code body may not both be empty.

<program>:
program IDENTIFIER ’;’

<decl-section>
<optional-main-body>

end IDENTIFIER ’;’
;

<optional-main-body>:
/* NULL */

| begin <stmt-list>
;

PROGRAM IDENTIFIER ;

END IDENTIFIER ;

decl-section optional-main-body

Figure 3-1. Program Statement Syntax

14 920i Programming Reference

The declaration section contains declarations defining global program types, variables, and subprograms. The
main code body, if present, is assumed to be the declaration of the program startup event handler. A program
startup event is generated when the instrument personality enters operational mode at initial power-up and when
exiting setup mode.

Example:
program MyProgram;

KeyCounter : Integer;
 handler AnyKeyPressed;
 begin

 KeyCounter := KeyCounter + 1;
 end;

begin
KeyCounter := 0

end MyProgram;

The iRite language requires declaration before use so the order of declarations in a program is very important.
The “declaration before use” requirement is imposed to prevent recursion, which is difficult for the compiler to
detect.

In general, it make sense for certain types of declarations to always come before others types of declarations. For
example, functions and procedures must always be declared before the handlers. Handlers cannot be called or
invoked from within the program, only by the event dispatching system. But functions and procedures can be
called from within event handlers; therefore, always declare the functions and procedures before handlers.

Another example would be to always declare constants before type definitions. This way you can size an array
with named constants.

Here is an example program with a logical ordering for various elements:
program Template; -- program name is always first!

-- Put include (.iri) files here.
#include template.iri

 -- Constants and aliases go here.
 g_csProgName : constant string := "Template Program";
 g_csVersion : constant string := "0.01";

 g_ciArraySize : integer := 100;

 -- User defined type definitions go here.
 type tShape is (Circle, Square, Triangle, Rectangle, Octagon, Pentagon,

Dodecahedron);

 type tColor is (Blue, Red, Green, Yellow, Purple);

 type tDescription is
 record
 eColor : tColor;
 eShape : tShape;
 end record;

 type tBigArray is array [g_ciArraySize] of tDescription;

 -- Variable declarations go here.

 g_iBuild : integer;
 g_srcResult : SysCode;

 g_aArray : tBigArray;
 g_rSingleRecord : tDescription;

920i Programming Reference - Language Syntax 15
To be the best by every measure

 -- Start functions and procedures definitions here.

 function MakeVersionString : string;
 sTemp : string;
 begin
 if g_iBuild > 9 then
 sTemp := ("Ver " + g_csVersion + "." + IntegerToString(g_iBuild, 2));
 else
 sTemp := ("Ver " + g_csVersion + ".0" + IntegerToString(g_iBuild, 1));
 end if;

 return sTemp;
 end;

 procedure DisplayVersion;
 begin
 DisplayStatus(g_csProgName + " " + MakeVersionString);
 end;
 -- Begin event handler definitions here.
 handler User1KeyPressed;

 begin
 DisplayVersion;
 end;

-- This chunk of code is the system startup event handler.

begin

 -- Initialize all global variables here.
 -- Increment the build number every time you make a change to a new version.
 g_iBuild := 3;

 -- Display the version number to the display.
 DisplayVersion;

end Template;

3.3 Declarations
3.3.1 Type Declarations
Type declarations provide the mechanism for specifying the details of enumeration and aggregate types. The
identifier representing the type name must be unique within the scope in which the type declaration appears. All
user-defined types must be declared prior to being used.

<type-declaration>:
type IDENTIFIER is <type-definition> ';'

;
<type-definition>:

<record-type-definition>
| <array-type-definition>
| <database-type-definition>
| <enum-type-definition>
;

TYPE IDENTIFIER ; IS type-definition

Figure 3-2. Type Declaration Syntax

IDENTIFIER : stored-option constant-option type

16 920i Programming Reference

Figure 3-3. Identifier Syntax

type-declaration

variable-declaration

procedure-declaration

function-declaration

handler-declaration

optional-initial-value ;

Figure 3-4. Type Declaration Syntax

Enumeration Type Definitions
An enumeration type definition defines a finite ordered set of values. Each value, represented by an identifier,
must be unique within the scope in which the type definition appears.

<enum-type-definition>:
'(' <identifier-list> ')'

;
<identifier-list>:

IDENTIFIER
| <identifier-list> ',' IDENTIFIER
;

Examples:
type StopLightColors is (Green, Yellow, Red);

type BatchStates is (NotStarted, OpenFeedGate, CloseGate, WaitforSS, PrintTicket, AllDone);

Record Type Definitions
A record type definition describes the structure and layout of a record type. Each field declaration describes a
named component of the record type. Each component name must be unique within the scope of the record; no
two components can have the same name. Enumeration, record and array type definitions are not allowed as the
type of a component: only previously defined user- or system-defined type names are allowed.

<record-type-definition>:
record

<field-declaration-list>
end record

;
<field-declaration-list>:

<field-declaration>
| <field declaration-list>

<field declaration>
;

<field-declaration>:
IDENTIFIER ':' <type> ';'

;

RECORD END RECORD field-declaration-list

920i Programming Reference - Language Syntax 17
To be the best by every measure

Figure 3-5. Record Type Definition Syntax

Examples:
type MyRecord is

record
A : integer;
B : real;

end record;

The EmployeeRecord record type definition, below, incorporates two enumeration type definitions, tDepartment
and tEmptype:

type tDepartment is (Shipping, Sales, Engineering, Management);

type tEmptype is (Hourly, Salaried);

type EmployeeRecord is
record

ID : integer;
Last : string;
First : string;
Dept : tDepartment;
EmployeeType : tEmptype;

end record;

Database Type Definitions
A database type definition describes a database structure, including an alias used to reference the database.

<database-type-definition>:
database (STRING_CONSTANT)

<field-declaration-list>
end database

;
<field-declaration-list>:

<field-declaration>
| <field declaration-list>

<field declaration>
;

<field-declaration>:
IDENTIFIER ':' <type> ';'

;

DATABASE

END DATABASE

field-declaration-list STRING-CONSTANT ()

Figure 3-6. Database Type Definition Syntax

Example: A database consisting of two fields, an integer field and a real number, could be defined as follows:

type MyDB is
database ("DBALIAS")

18 920i Programming Reference

A : integer
B : real

end database;
;

Array Type Definitions
An array type definition describes a container for an ordered collection of identically typed objects. The
container is organized as an array of one or more dimensions. All dimensions begin at index 1.

<array-type-definition>:
array '[' <expr-list> ']' of <type>

;

ARRAY END expr-list type []

Figure 3-7. Array Type Definition Syntax

Examples:
type Weights is array [25] of Real;

An array consisting of user-defined records could be defined as follows:

type Employees is array [100] of EmployeeRecord;

A two-dimensional array in which each dimension has an index range of 10 (1…10), for a total of 100 elements
could be defined as follows:

type MyArray is array [10,10] of Integer;

Note
In all of the preceding examples, no variables (objects) are created, no memory is allocated by the type
definitions. The type definition only defines a type for use in a later variable declaration, at which time
memory is allocated.

3.3.2 Variable Declarations
A variable declaration creates an object of a particular type. The type specified must be a previously defined
user- or system-defined type name. The initial value, if specified, must be type-compatible with the declared
object type. All user-defined variables must be declared before being used.

Variables declared with the keyword stored cause memory to be allocated in battery-backed RAM. Stored data
values are retained even after the indicator is powered down.

Variables declared with the keyword constant must have an initial value.

<variable-declaration>:
IDENTIFIER ':' <stored-option> <constant-option> <type>
<optional-initial-value>

;
<stored-option>:

/* NULL */
| stored
;

<constant-option>:
/* NULL */

| constant
;

<optional-initial-value>:
/* NULL */

| := <expr>
;

Example:
MyVariable : StopLightColor;

920i Programming Reference - Language Syntax 19
To be the best by every measure

3.3.3 Subprogram Declarations
A subprogram declaration defines the formal parameters, return type, local types and variables, and the
executable code of a subprogram. Subprograms include handlers, procedures, and functions.

Handler Declarations
A handler declaration defines a subprogram that is to be installed as an event handler. An event handler does not
permit parameters or a return type, and can only be invoked by the event dispatching system.

<handler-declaration>:
handler IDENTIFIER ';'

<decl-section>
begin

<stmt-list>
end ';'

;

HANDLER IDENTIFIER decl-section ;

stmt-list ; BEGIN END

Figure 3-8. Handler Declaration Syntax

Example:
handler SP1Trip;

I : Integer;

begin
for I := 1 to 10
loop

Writeln (1, "Setpoint Tripped!");
if I=2 then

return;
endif;

end loop;
end;

Procedure Declarations
A procedure declaration defines a subprogram that can be invoked by other subprograms. A procedure allows
parameters but not a return type. A procedure must be declared before it can be referenced; recursion is not
supported.

<procedure-declaration>:
procedure IDENTIFIER
<optional-formal-args> ';'
<decl-section>
begin
<stmt-list>
end ';'

;
<optional-formal-args>:

/* NULL */
| <formal-args>
;

<formal-args>:

20 920i Programming Reference

'(' <arg-list> ')'
;

<arg-list>:
<optional-var-spec>
<variable-declaration>

| <arg-list> ';' <optional-var-spec>
<variable-declaration>

;
<optional-var-spec>:

/* NULL */
| var
;

PROCEDURE IDENTIFIER optional-formal-args subprogram-completion

Figure 3-9. Procedure Declaration Syntax

Examples:

procedure PrintString (S : String);
begin

Writeln (1, "The String is => ",S);
end;

procedure ShowVersion;
begin

DisplayStatus ("Version 1.42");
end;

procedure Inc (var iVariable : Integer);
begin

iVariable := iVariable + 1;
end;

Function Declarations
A function declaration defines a subprogram that can be invoked by other subprograms. A function allows
parameters and requires a return type. A function must be declared before it can be referenced; recursion is not
supported. A function must return to the point of call using a return-with-value statement.

<function-declaration>:
function IDENTIFIER
<optional-formal-args> ':' <type> ';'
<decl-section>
begin
<stmt-list>
end ';'

;

FUNCTION IDENTIFIER optional-formal-args

subprogram-completion

:

type

Figure 3-10. Function Declaration Syntax

Examples:

function Sum (A : integer; B : integer) : Integer;

920i Programming Reference - Language Syntax 21
To be the best by every measure

begin
return A + B;

end;

function PoundsPerGallon : Real;
begin

return 8.34;
end;

3.4 Statements
There are only six discrete statements in iRite. Some statements, like the if, call, and assignment (:=) are used
extensively even in the simplest program, while the exit statement should be used rarely. The if and the loop
statements have variations and can be quite complex. Let’s take a closer look at each of the six:

<stmt>:
<assign-stmt>

| <call-stmt>
| <if-stmt>
| <return-stmt>
| <loop-stmt>
| exit-stmt>
;

3.4.1 Assignment Statement

expr :=

Figure 3-11. Assignment Statement Syntax

The assignment statement uses the assignment operator (:=) to assign the expression on the right-hand side to the
object or component on the left-hand side. The types of the left-hand and right-hand sides must be compatible.
The value on the left of the “:=” must be a modifiable value. Here are some examples:

Simple assignments:

iMaxPieces := 12000;
rRotations := 25.3456;
sPlaceChickenPrompt := "Please place the chicken on the scale…";

Assignments in declarations (initialization):

iRevision : integer := 1;
rPricePerPound : real := 4.99;
csProgramName : constant string := "Pig and Chicken Weigher";

Assignments in for loop initialization:

for iCounter := 1 to 25
for iTries := ciFirstTry to ciMaxTries

Assignment of function return value:

sysReturn := GetSPTime(4, dtDateTime);
rCosine := Cos(1.234);

Assignment with complex expression on right-hand side:

iTotalLivestock := iNumChickens + iNumPigs + GetNumCows;

22 920i Programming Reference

rTotalCost := ((iNumBolt * rBoltPrice) + (iNumNuts * rNutPrice)) * (1 + rTaxRate);
sOutputText := The total cost is : " + RealToString(rTotalCost, 4, 2) + " dollars.";

Assignment of different but compatible types:

iValue := 34.867; -- Loss of significant digits! iValue will equal 34, no rounding!
rDegrees := 212; -- No problem! rDegrees will equal 212.000000000000000000

3.4.2 Call Statement
The call statement is used to initiate a subprogram invocation. The number and type of any actual parameters are
compared against the number and type of the formal parameters that were defined in the subprogram declaration.
The number of parameters must match exactly. The types of the actual and formal parameters must also be
compatible. Parameter passing is accomplished by copy-in, or by copy-in/copy-out for var parameters.

<call-stmt>:
<name> ';'

;
Copy-in refers to the way value parameters are copied into their corresponding formal parameters. The default
way to pass a parameter in iRite is “by value”. By value means that a copy of actual parameter is made to use in
the function or procedure. The copy may be changed inside the function or procedure but these changes will
never affect the value of the actual parameter outside of the function or procedure, since only the copy may be
changed.

The other way to pass a parameter is to use a copy-in/copy-out method. To specify the copy-in/copy-out method,
a formal parameter must be preceded by the keyword var in the subprogram declaration. Var stands for
“variable”, which means the parameter may be changed. Just like with a value parameter, a copy is made.
However, when the function or procedure is done executing, the value of the copy is then copied, or assigned,
back into the actual parameter. This is the copy-out part. The result is that if the formal var parameter was
changed within the subprogram, then the actual parameter will also be changed after the subprogram returns.
Actual var parameters must be values: a constant cannot be passed as a var parameter.

One potentially troublesome issue occurs when passing a global parameter as a var parameter. If a global
parameter is passed to a function or procedure as a var parameter, then the system makes a copy of it to use in the
function body. Let’s say that the value of the formal parameter is changed and then some other function or
procedure call is made after the change to the formal parameter. If the function or procedure called uses, by
name, the same global parameter that was passed into the original function, then the value of the global
parameter in the second function will be the value of the global when it was pass into the original function. This
is because the changes made to the formal parameter (only a copy of the actual parameter passed in) have not yet
been copied-out, since the function or procedure has not returned yet. This is better demonstrated with an
example:
program GlobalAsVar;

g_ciPrinterPort : constant integer := 2;

g_sString : string := "Initialized, not changed yet";

 procedure PrintGlobalString;
 begin
 WriteLn(g_ciPrinterPort, g_sString);
 end;

 procedure SetGlobalString (var vsStringCopy : string);
 begin

 vsStringCopy := "String has been changed";

 Write(g_ciPrinterPort, "In function call: ");
 PrintGlobalString;

920i Programming Reference - Language Syntax 23
To be the best by every measure

 end;
begin
 Write(g_ciPrinterPort, "Before function call: ");
 PrintGlobalString;

 SetGlobalString(g_sString);

 Write(g_ciPrinterPort, "After function call: ");
 PrintGlobalString;

end GlobalAsVar;

When run, the program prints the following:

Before function call: Initialized, not changed yet
In function call: Initialized, not changed yet
After function call: String has been changed

3.4.3 If Statement

optional-elsif-list

IF

END

expr THEN

optional-else-part

IF

stmt-list

;

Figure 3-12. If Statement Syntax

The if statement is one of the programmer’s most useful tools. The if statement is used to force the program to
execute different paths based on a decision. In its simplest form, the if statement looks like this:

if <expression> then
<statement list>

end if;

The decision is made after evaluating the expression. The expression is most often a “conditional expression”. If
the expression evaluates to true, then the statements in <statement list> are executed. This form of the if
statement is used primarily when you only want to do something if a certain condition is true. Here is an
example:

if iStrikes = 3 then
 sResponse := "You’re out!";
end if;

stmt-list ELSE

Figure 3-13. Optional Else Statement Syntax

Another form of the if statement, known as the if-else statement has the general form:

if <expression> then
 <statement list 1>
else
 <statement list 2>
end if;

24 920i Programming Reference

The if-else is used when the program must decide which of exactly two different paths of execution must be
executed. The path that will execute the statement or statements in <statement list 1> will be chosen if
<expression> evaluates to true. Here is an example:

if iAge => 18 then
 sStatus := "Adult";
else
 sStatus := "Minor";

end if;

If the statement is false, then the statement or statements in <statement list 2> will be executed. Once the
expression is evaluated and one of the paths is chosen, the expression is not evaluated again. This means the
statement will terminate after one of the paths has been executed.

For example, if the expression was true and we were executing <statement list 1>, and within the code in
<statement list 1> we change some part of <expression> so it would at that moment evaluate to false,
<statement list 2> would still not be executed. This point is more relevant in the next form called the if-elsif.

ELSIF expr stmt-list THEN

Figure 3-14. Optional Else-If Statement Syntax

The if-elsif version is used when a multi-way decision is necessary and has this general form:

if <expression> then
 <statement list 1>
elsif <expression> then
 <statement list 2>
elsif <expression> then
 <statement list 3>
elsif <expression> then
 <statement list 4>
else
 <statement list 5>
end if;

Here is an example of the if-elsif form:

if rWeight <= 2.0 then
 iGrade := 1;
elsif (rWeight > 2.0) and (rWeight < 4.5) then
 iGrade := 2;
elsif (rWeight > 4.5) and (rWeight < 9.25) then
 iGrade := 3;
elsif (rWeight > 9.25) and (rWeight < 11.875) then
 iGrade := 4;
else
 iGrade := 0;
 sErrorString := "Invalid Weight!";
end if;

920i Programming Reference - Language Syntax 25
To be the best by every measure

3.4.4 Loop Statement

END LOOP

stmt-list

;

LOOP optional-iteration-clause

Figure 3-15. Loop Statement Syntax

The loop statement is also quite important in programming. The loop statement is used to execute a statement list
0 or more times. An optional expression is evaluated and the statement list is executed. The expression is then
re-evaluated and as long as the expression is true the statements will continue to get executed. The loop
statement in iRite has three general forms. One way is to write a loop with no conditional expression. The loop
will keep executing the loop body (the statement list) until the exit statement is encountered. The exit statement
can be used in any loop, but is most often used in this version without a conditional expression to evaluate. It has
this form:

loop
<statement list>
end loop;

This version is most often used with an if statement at the end of the statement list. This way the statement list
will always execute at least once. This is referred to as a loop-until. Here is an example:

rGrossWeight : real;

loop
 WriteLn(2, "I’m in a loop.");
 GetGross(1, Primary, rGrossWeight);
 if rGrossWeight > 200 then
 exit;
 end if;
end loop;

A similar version uses an optional while clause at the start of the loop. The while-loop version is used when you
want the loop to execute zero or more times. Since the expression is evaluated before the loop is entered, the
statement list may not get executed even once. Here is the general form for the while-loop statement:

while <expression>
loop

<statement list>
end loop;

Here is the same example from above, but with a while clause. Keep in mind that if the gross weight is greater
than 200 pounds, then the loop body will never execute:

rGrossWeight : real;

GetGross(1, Primary, rGrossWeight);

while rGrossWeight <= 200
loop

 WriteLn(2, "I’m in a loop.");
 GetGross(1, Primary, rGrossWeight);

end loop;

Here we see that we had to get the weight before we could evaluate the expression. In addition we have to get the
weight in the loop. In this example, it would be better programming to use the loop-until version.

Another version is known as the for-loop. The for-loop is best used when you want to execute a chunk of code
for a known or predetermined number of times. In its general form the for-loop looks like this:

26 920i Programming Reference

for <name> := <expression> to <expression> step <expression>
loop

<statement list>
end loop;

expr

optional-step-clause

FOR

WHILE expr

name TO expr :=

Figure 3-16. Optional Loop Iteration Clause Syntax

The optional step clause can be omitted if you want <name> to increment by 1 after each run of the statement
list. If you want to increment <name> by 2 or 3, or decrement it by 1 or 2, then you have to use the step clause.
The step expression (–1 in the second example below) must be a constant.

for iCount := 97 to 122
loop

 strAlpha := strAlpha + chr$(iCount);
end loop;

for iCount := 10 to 0 step -1
loop

 if iCount = 0 then
 strMissionControl := "Blast off!";
 else
 strMissionControl := IntegerToString(iCount, 2);
 end if;

end loop;

STEP expr

Figure 3-17. Optional Step Clause Syntax

Note
Use caution when designing loops to ensure that you don’t create an infinite loop. If your program
encounters an infinite loop, only the loop will run; subsequent queued events will not be run.

920i Programming Reference - Language Syntax 27
To be the best by every measure

3.4.5 Return Statement
The return statement can only be used inside of subprograms (functions, procedures, and event handlers). The
return statement in procedures and handlers cannot return a value. An explicit return statement inside a procedure
or handler is not required since the compiler will insert one if the return statement is missing. If you want to
return from a procedure or handler before the code body is done executing, then you can use the return statement
to exit at that point.

procedure DontDoMuch;
begin
if PromptUser("circle: ") <> SysOK then
 return;
 end if;
end;

Functions must return a value and an explicit return statement is required. The data type of the expression
returned must be compatible with the return type specified in the function declaration.

function Inc(var viNumber : integer) : integer;
begin
 viNumber := viNumber + 1;
 return viNumber;
end;

It is permissible to have more than one return statement in a subprogram, but not recommended. In most
instances it is better programming practice to use conditional execution (using the if statement) with one return
statement at the end of the function than it is to use a return statement multiple times. Return statements
liberally dispersed through a subprogram body can result in “dead code” (code that never gets executed) and
hard-to-find bugs.

RETURN optional-return-value ;

Figure 3-18. Return Statement Syntax

3.4.6 Exit Statement
The exit statement is only allowed in loops. It is used to immediately exit any loop (loop-until, for-loop,
while-loop) it is called from. Sometimes it is convenient to be able to exit from a loop instead of testing at the
top. In the case of nested loops (a loop inside another loop), only the innermost enclosing loop will be exited. See
the loop examples in Section 3.4.4 on page 25 for the exit statement in action.

EXIT ;

Figure 3-19. Exit Statement Syntax

28 920i Programming Reference

4.0 Built-in Types
The following built-in types are used in parameters passed to and from the functions described in this section.
Most built-in types are declared in the system.src file found in the iRev application directory. Some built-in types
are defined by the compiler and are not declared in the system.src file.

type SysCode is (SysOK,
SysLFTViolation,
SysOutOfRange,
SysPermissionDenied,
SysInvalidScale,
SysBatchRunning,
SysBatchNotRunning,
SysNoTare,
SysInvalidPort,
SysQFull,
SysInvalidUnits,
SysInvalidSetpoint,
SysInvalidRequest,
SysInvalidMode,
SysRequestFailed,
SysInvalidKey,
SysInvalidWidget,
SysInvalidState,
SysInvalidTimer,
SysNoSuchDatabase,
SysNoSuchRecord,
SysDatabaseFull,
SysNoSuchColumn,
SysInvalidCounter,
SysDeviceError,
SysInvalidChecksum,
SysOk,
SysNoFileSystemFound,
SysPortbusy,
SysFileNotFound,
SysDirectoryNotFound,
SysFileExists,
SysInvalidFileFormat,
SysInvalidMode,
SysBadFilename, (over 8 characters)
SysMediaChanged,
SysNoFileOpen,
SysEndOfFile);

type Mode is (GrossMode, NetMode, TareMode);
type Units is (Primary, Secondary, Tertiary);
type TareType is (NoTare, PushButtonTare, KeyedTare);
type BatchingMode is (Off, Manual, Auto);
type BatchStatus is (BatchComplete, BatchStopped, BatchRunning, BatchPaused);
-- PrintFormat must match the definitions in print.h in the core software.
type PrintFormat is (GrossFmt, NetFmt,
AuxFmt,
TrWInFmt, TrRegFmt, TrWOutFmt,
SPFmt,
AccumFmt, AlertFmt,

920i Programming Reference - Built-in Types 29

AuxFmt1, AuxFmt2, AuxFmt3, AuxFmt4, AuxFmt5,
AuxFmt6, AuxFmt7, AuxFmt8, AuxFmt9, AuxFmt10,
AuxFmt11, AuxFmt12, AuxFmt13, AuxFmt14, AuxFmt15,
AuxFmt16, AuxFmt17, AuxFmt18, AuxFmt19, AuxFmt20);
--TimerMode must match the definitions in API_timer.c in the core software.
type TimerMode is (TimerOneShot, TimerContinuous, TimerDigoutON, TimerDigoutOFF);
type OnOffType is (VOff, VOn);
type Keys is (Soft4Key, Soft5Key, GrossNetKey, UnitsKey,

Soft3Key, Soft2Key, Soft1Key, ZeroKey,
Undefined3Key, Undefined4Key, TareKey, PrintKey,
N1Key, N4Key, N7Key, DecpntKey,
NavUpKey, NavLeftKey, EnterKey, Undefined5Key,
N2Key, N5Key, N8Key, N0Key,
Undefined1Key, Undefined2Key, NavRightKey, NavDownKey,
N3Key, N6Key, N9Key, ClearKey),
TimeDateKey, WeighInKey, WeighOutKey, ID_EntryKey,
DisplayTareKey, TruckRegsKey, DisplayAccumKey, ScaleSelectKey,
DisplayROCKey, SetpointKey, BatchStartKey, BatchStopKey,
BatchPauseKey, BatchResetKey, DiagnosticsKey, ContactsKey,
DoneKey, TestKey);

type DT Component is (DateTimeYear,
DateTimeMonth,
DateTimeDay,
DateTimeHour,
DateTimeMinute,
DateTimeSecond);

type BusImage is array[32] of integer;
type BusImageReal is array[32] of real;
type DataArray is array[300] of real;
type DisplayImage is array[2402] of integer;
type Color_type is (White, Black);
-- UnitType must match the core definitions in cfg.h
type UnitType is (pound, kilogram, gram, ounce, short_ton,

metric_ton, grain, troy_ounce, troy_pound,
long_ton, custom, units_off, none);

type ExtFloatArray is array[5] of integer;
type WgtMsg is array[12] of integer;
-- This enumeration must match the RESP_CODE_* definitions in core code dtable.h.
type HW_type is (NoCard,

DualSerial,
DualAtoD,
SingleAtoD,
AnalogOut,
DigitalIO,
Pulse,
Memory,
reservedCard,
DeviceNet,
Profibus,
Ethernet,
ABRIO,
BCD,
DSP2000,
AnalogInput,
ControlNet

30 920i Programming Reference

DualAnalogOut);
-- Array size must match MAX_SLOTS in core code common.h.
type HW_array_type is array[14] of HW_type;
-- Graph type must match definitions in graphing.h.
type GraphType is (Line, Bar, XY);
-- Decimal_Type must match enumeration in cfg.h.
type Decimal_type is (DP_8_888888,

DP_88_88888,
DP_888_8888,
DP_8888_888,
DP_88888_88,
DP_888888_8,
DP_8888888,
DP_8888880,
DP_8888800,
DP_DEFAULT);

-- IQValType must match the enumeration in iQube.h in the core software.
type IQValType is (IQSys, IQPlat, IQRawLC, IQCCorrLC, IQZeroLC, IStatLC
IQ2ScaleWt, IQ2StatusLC);
type USBDeviceType is(USBNoDevice, USBHostPC, USBPrinter1, USBPrinter2,
USBKeyboard, USBFileSystem);
type FileAccessMode is(FileCreate, FileAppend, FileRead);
type FileLineTermination is(FileCRLF, FileCR, FileLF);

Using SysCode Data
SysCode data can be used to take some action based on whether or not a function completed successfully. For
example, the following code checks the SysCode result following a GetTare function. If the function completed
successfully, the retrieved tare weight is written to Port 1:

Scale1 : constant Integer := 1;
Port1 : constant Integer := 1;
SysResult : SysCode;
TareWeight : Real;
…
SysResult:= GetTare (Scale1, Primary, TareWeight);
if SysResult = SysOK then
WriteLn (Port1, "The current tare weight is ", TareWeight)’

end if;

920i Programming Reference - API Reference 31

5.0 API Reference
This section lists the application programming interfaces (APIs) used to program the 920i indicator. Functions
are grouped according to the kinds of operations they support.

Note
If you are unsure whether your version of software supports a given API, check the system.src file to see if
the API is present.

5.1 Scale Data Acquisition

Note
Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK,
the VAR parameter is not changed.

5.1.1Weight Acquisition

CloseDataRecording
Turns off data recording started with InitDataRecording. This procedure removes all connections to the data
recording function. To restart data recording, use the InitDataRecording function.

Method Signature:
procedure CloseDataRecording (scale_no : Integer);

Parameters:
[in] scale_no Scale number

GetDataRecordSize
Returns the number of data points recorded in the user-specified data array.

Method Signature:
function GetDataRecordSize (scale_no : Integer) : Integer;

Parameters:
[in] scale_no Scale number

SysCode values returned:
number The SysCode contains the number of data points recorded.

GetGross
Sets W to the current gross weight value of scale S, in the units specified by U. W will contain a weight value even
if the scale is in programmed overload.

Method Signature:
function GetGross (S : Integer; U : Units; VAR W : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Gross weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysInvalidRequest The requested value is not available.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
GrossWeight : Real;
…
GetGross (Scale1, Primary, GrossWeight);
WriteLn (Port1, "Current gross weight is", GrossWeight);

32 920i Programming Reference

GetNet
Sets W to the current net weight value of scale S, in the units specified by U. W will contain a weight value even if
the scale is in programmed overload.

Method Signature:
function GetNet (S : Integer; U : Units; VAR W : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Net weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysInvalidRequest The requested value is not available.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
NetWeight : Real;
…
GetNet (Scale2, Secondary, NetWeight);
WriteLn (Port1, "Current net weight is", NetWeight);

GetTare
Sets W to the tare weight of scale S in weight units specified by U.

function GetTare (S : Integer; U : Units; VAR W : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Tare weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysInvalidRequest The requested value is not available.
SysNoTare The specified scale has no tare. W is set to 0.0.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
TareWeight : Real;
…
GetTare (Scale3, Tertiary, TareWeight);
WriteLn (Port1, "Current tare weight is ", TareWeight);

InitDataRecording
InitDataRecording allows raw weights to be stored to a user program-specified array on each iteration of the
scale processor. Recording begins when the start_sp is satisfied and ends when the stop_sp is satisfied.
InitDataRecording specifies the data array used for the recording, scale number, and the start and stop setpoint
numbers.

Note
If the setpoint conditions return to the start conditions (start_sp satisfied, stop_sp not satisfied), recording
will continue at the array location where it left off. Thus, a continuous batch will need to call
CloseDataRecording to stop recording, then call InitDataRecording to restart data recording at the
beginning of the array.

Method Signature:
function InitDataRecording (data : DataArray; scale_no : Integer; start_sp :
Integer; stop_sp : Integer) : SysCode;

920i Programming Reference - API Reference 33

Parameters:
[in] data Data array name
[in] scale_no Scale number
[in] start_sp Start setpoint number
[in] stop_sp Stop setpoint number

SysCode values returned:
SysRequestFailed The function did not complete.
SysOK The function completed successfully.

5.1.2 Tare Manipulation

AcquireTare
Acquires a pushbutton tare from scale S.

Method Signature:
function AcquireTare (S : Integer) : SysCode;

Parameters:
[in] S Scale number

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the

specified scale. No tare is acquired.
SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare

is acquired.
SysPermissionDenied The tare operation would violate configured tare acquisition restrictions for the

specified scale. No tare is acquired.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
AcquireTare (Scale1);

ClearTare
Removes the tare associated with scale S and sets the tare type associated with the scale to NoTare.

Method Signature:
function ClearTare (S : Integer) : SysCode;

Parameters:
[in] S Scale number

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysNoTare The scale specified by S has no tare.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
ClearTare (Scale1);

GetTareType
Sets T to indicate the type of tare currently on scale S.

Method Signature:
function GetTareType (S : Integer; VAR T : TareType) : SysCode;

Parameters:
[in] S Scale number
[out] T Tare type

34 920i Programming Reference

TareType values returned:
NoTare There is no tare value associated with the specified scale.
PushbuttonTare The current tare was acquired by pushbutton.
KeyedTare The current tare was acquired by key entry or by setting the tare.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist. T is unchanged.
SysOK The function completed successfully.

Example:
TT : TareType;
…
GetTareType (Scale1, TT);
if TT=KeyedTare then …

SetTare
Sets the tare weight for the specified channel.

Method Signature:
function SetTare (S : Integer; U : Units; W : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[in] W Tare weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysLFTViolation The tare operation would violate configured legal-for-trade restrictions for the

specified scale. No tare is acquired.
SysOutOfRange The tare operation would acquire a tare that may cause a display overload. No tare

is acquired.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
DesiredTare : Real;
…
DesiredTare := 1234.5;
SetTare (Scale1, Primary, DesiredTare);

5.1.3 Rate of Change

GetROC
Sets R to the current rate-of-change value of scale S.

Method Signature:
function GetROC (S : Integer; VAR R : Real) : SysCode;

Parameters:
[in] S Scale number
[out] R Rate of change value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
ROC : Real;
…
GetROC (Scale3, ROC);
WriteLn (Port1, "Current ROC is", ROC);

920i Programming Reference - API Reference 35

5.1.4 Accumulator Operations

ClearAccum
Sets the value of the accumulator for scale S to zero.

Method Signature:
function ClearAccum (S : Integer) : SysCode;

Parameters:
[in] S Scale number

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
ClearAccum (Scale1);

GetAccum
Sets W to the value of the accumulator associated with scale S, in the units specified by U.

Method Signature:
function GetAccum (S : Integer; U : Units; VAR W ; Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Accumulated weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

Example:
AccumValue : Real;
…
GetAccum (Scale1, AccumValue);

GetAccumCount
Sets N to the number of accumulations performed for scale S since its accumulator was last cleared.

Method Signature:
function GetAccumCount (S : Integer; VAR N ; Integer) : SysCode;

Parameters:
[in] S Scale number
[out] N Accumulator count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
NumAccums : Integer;
…
GetAccumCount (Scale1, NumAccums);

36 920i Programming Reference

GetAccumDate
Sets D to the date of the most recent accumulation performed by scale S.

Method Signature:
function GetAccumDate (S : Integer; VAR D ; String) : SysCode;

Parameters:
[in] S Scale number
[out] D Accumulator date

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
AccumDate : String;
…
GetAccumDate (Scale1, AccumDate);

GetAccumTime
Sets T to the time of the most recent accumulation performed by scale S.

Method Signature:
function GetAccumTime (S : Integer; VAR T ; String) : SysCode;

Parameters:
[in] S Scale number
[out] T Accumulator time

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
AccumTime : String;
…
GetAccumTime (Scale1, AccumTime);

GetAvgAccum
Sets W to the average accumulator value associated with scale S, in the units specified by U, since the
accumulator was last cleared.

Method Signature:
function GetAvgAccum (S : Integer; U : Units; VAR W ; Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] W Average accumulator weight

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

920i Programming Reference - API Reference 37

Example:
AvgAccum : Real;
…
GetAvgAccum (Scale1, AvgAccum);

GetUnitsString
Sets V to the text string representing the current display units for scale S.

Method Signature:
function GetUnitsString (S : Integer; U : Units; VAR V : String) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] V Current display units string

Units values sent:
Primary Primary units are currently displayed on scale S.
Secondary Secondary units are currently displayed on scale S.
Tertiary Tertiary units are currently displayed on scale S.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units value specified by U does not exist.
SysOK The function completed successfully.

Example:
CurrentUnitsString : Units;
…
GetUnitsString (Scale1, Primary, CurrentUnitsString);

SetAccum
Sets the value of the accumulator associated with scale S to weight W, in units specified by U.

Method Signature:
function SetAccum (S : Integer; U : Units; W : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[in] W Accumulator value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not valid.
SysDeviceError The scale is reporting an error condition.
SysPermissionDenied The accumulator is not enabled for the specified scale.
SysOK The function completed successfully.

Example:
AccumValue : Real;
…
AccumValue := 110.5
SetAccum (Scale1, Primary, AccumValue);

5.1.5 Scale Operations

CurrentScale
Sets S to the numeric ID of the currently displayed scale.

Method Signature:
function CurrentScale : Integer;

38 920i Programming Reference

Example:
ScaleNumber : Integer;
…
ScaleNumber := CurrentScale;

GetMode
Sets M to the value representing the current display mode for scale S.

Method Signature:
function GetMode (S : Integer; VAR M : Mode) : SysCode;

Parameters:
[in] S Scale number
[out] U Current display mode

Mode values returned:
GrossMode Scale S is currently in gross mode.
NetMode Scale S is currently in net mode.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
CurrentMode : Mode;
…
GetMode (Scale1, CurrentMode);

GetUnits
Sets U to the value representing the current display units for scale S.

Method Signature:
function GetUnits (S : Integer; VAR U : Units) : SysCode;

Parameters:
[in] S Scale number
[out] U Current display units

Units values returned:
Primary Primary units are currently displayed on scale S.
Secondary Secondary units are currently displayed on scale S.
Tertiary Tertiary units are currently displayed on scale S.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
CurrentUnits : Units;
…
GetUnits (Scale1, CurrentUnits);

InCOZ
Sets V to a non-zero value if scale S is within 0.25 grads of gross zero. If the condition is not met, V is set to zero.

Method Signature:
function InCOZ (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[in] V Center-of-zero value

920i Programming Reference - API Reference 39

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully

Example:
ScaleAtCOZ : Integer;
…
InCOZ (Scale1, ScaleAtCOZ);

InMotion
Sets V to a non-zero value if scale S is in motion. Otherwise, V is set to zero.

Method Signature:
function InMotion (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[in] V In-motion value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully

Example:
ScaleInMotion : Integer;
…
InMotion (Scale1, ScaleInMotion);

InRange
Sets V to zero value if scale S is in an overload or underload condition. Otherwise, V is set to a non-zero value.

Method Signature:
function InRange (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[in] V In-range value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully

Example:
ScaleInRange : Integer;
…
InRange (Scale1, ScaleInRange);

SelectScale
Sets scale S as the current scale.

Method Signature:
function SelectScale (S : Integer) : SysCode;

Parameters:
[in] S Scale number

40 920i Programming Reference

SysCode values returned:
SysInvalidScale The scale specified by S does not exist. The current scale is not changed
SysOK The function completed successfully.

Example:
SelectScale (Scale1);

SetMode
Sets the current display mode on scale S to M.

Method Signature:
function SetMode (S : Integer; M : Mode) : SysCode;

Parameters:
[in] S Scale number
[in] M Scale mode

Mode values sent:
GrossMode Scale S is set to gross mode.
NetMode Scale S is set to net mode.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidMode The mode value M is not valid.
SysDeviceError The scale is reporting an error condition. M is not changed.
SysOK The function completed successfully.

Example:
SetMode (Scale1, Gross);

SetUnits
Sets the current display units on scale S to U.

Method Signature:
function SetUnits (S : Integer; U : Units) : SysCode;

Parameters:
[in] S Scale number
[in] U Scale units

Units values sent:
Primary Primary units will be displayed on scale S.
Secondary Secondary units will be displayed on scale S.
Tertiary Tertiary units will be displayed on scale S.

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units value U is not valid.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
SetUnits (Scale1, Secondary);

ZeroScale
Performs a gross zero scale operation for S.

Method Signature:
function ZeroScale (S : Integer) : SysCode;

Parameters:
[in] S Scale number

920i Programming Reference - API Reference 41

SysCode values returned:
SysInvalidScale The scale specified by S does not exist
SysLFTViolation The zero operation would violate configured legal-for-trade restrictions for the

specified scale. No zero is performed.
SysOutOfRange The zero operation would exceed the configured zeroing limit. No zero is acquired.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
ZeroScale (Scale1);

5.1.6 A/D and Calibration Data

GetFilteredCount
Sets C to the current filtered A/D count for scale S.

Method Signature:
function GetFilteredCount (S : Integer; VAR C : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] C Current filtered A/D count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
FilterCount : Integer;
…
GetFilteredCount (1; FilterCount);

GetLCCD
Sets V to the calibrated deadload count for scale S.

Method Signature:
function GetLCCD (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] V Deadload count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

GetLCCW
Sets V to the calibrated span count for scale S.

Method Signature:
function GetLCCW (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] V Calibrated span count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

42 920i Programming Reference

GetRawCount
Sets C to the current raw A/D count for scale S.

Method Signature:
function GetRawCount (S : Integer; VAR C : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] C Current raw A/D count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

Example:
RawCount : Integer;
…
GetRawCount (1; RawCount);

GetWVal
Sets V to the configured WVAL (test weight value) for scale S.

Method Signature:
function GetWVal (S : Integer; VAR V : Real) : SysCode;

Parameters:
[in] S Scale number
[out] V Test weight value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

GetZeroCount
Sets V to the acquired zero count for scale S.

Method Signature:
function GetZeroCount (S : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] V Zero count

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S is not an A/D-based scale.
SysOK The function completed successfully.

5.2 System Support
Date$
Returns a string representing the system date contained in DT.

Method Signature:
function Date$ (DT : DateTime) : String;

DisableHandler
Disables the specified event handler. See Section 6.1 on page 85 for a list of handlers.

Method Signature:
procedure DisableHandler (handler);

920i Programming Reference - API Reference 43

DisplayIsSuspended
Returns a true (non-zero) value if the display is suspended (using the SuspendDisplay procedure), or a false
(zero) value if the display is not suspended.

Method Signature:
function DisplayIsSuspended : Integer;

EnableHandler
Enables the specified event handler. See Section 6.1 on page 85 for a list of handlers.

Method Signature:
procedure EnableHandler (handler);

EventChar
Returns a one-character string representing the character received on a communications port that caused the
PortxCharReceived event. If EventChar is called outside the scope of a PortxCharReceived event, EventChar returns a
string of length zero. See Section 6.1 on page 85 for information about the PortxCharReceived event handler.

Method Signature:
function EventChar : String;

Example:
handler Port4CharReceived;
 strOneChar : string;
begin
 strOneChar := EventChar;
end;

EventKey
Returns an enumeration of type Keys with the value corresponding to the key press that generated the event. See
Section 4.0 on page 28 for a definition of the Keys data type.

Method Signature:
function EventKey : Keys;

Example:
handler KeyPressed;
begin
 if EventKey = ClearKey then
 …
 end if;
end;

EventPort
Returns the communications port number that received an F#x serial command. This function extracts data from
the CmdxHandler event for the F#x command, if enabled. (The CmdxHandler, if enabled, runs whenever a F#x
command is received on any serial port.) If the CmdxHandler is not enabled, this function returns 0 as the port
number.

Method Signature:
function EventPort : Integer;

EventString
Returns the string sent with an F#x serial command. This function extracts data from the CmdxHandler event for
the F#x command, if enabled. (The CmdxHandler, if enabled, runs whenever a F#x command is received on any
serial port.) If the CmdxHandler is not enabled, or if no string is defined for the F#x command, this function
returns a string of length zero.

Method Signature:
function EventString : String;

44 920i Programming Reference

GetConsecNum
Returns the value of the consecutive number counter.

Method Signature:
function GetConsecNum : Integer;

GetCountBy
Sets C to the real count-by value on scale S, in units U.

Method Signature:
function GetCountBy (S : Integer; U : Units; VAR C : Real) : SysCode;

Parameters:
[in] S Scale number
[in] U Units (Primary, Secondary, Tertiary)
[out] C Count-by value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidUnits The units specified by U is not recognized.
SysInvalidRequest The scale specified by S does not support this operation (serial scale).
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

GetDate
Extracts date information from DT and places the data in variables Year, Month, and Day.

Method Signature:
procedure GetDate (DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR Day
: Integer);

Parameters:
[in] DT DateTime variable name
[out] Year Year
[out] Month Month
[out] Day Day

GetGrads
Sets G to the configured grad value of scale S.

Method Signature:
function GetGrads (S : Integer; VAR G : Integer) : SysCode;

Parameters:
[in] S Scale number
[out] G Grads value

SysCode values returned:
SysInvalidScale The scale specified by S does not exist.
SysInvalidRequest The scale specified by S does not support this operation (serial scale).
SysDeviceError The scale is reporting an error condition.
SysOK The function completed successfully.

GetIqubeData
Returns data from a given iQube. The types that IQValType may be are: IQSys, IQPlat, IQRawLC, IQCorrLC,
IQZeroLC, IQStatLC, IQScaleWt, and IQ2StatusLC. IQSys returns the system weight value. IQPlat returns the
millivolt value for the indexed platform. IQRawLC returns the indexed raw load cell millivolt value. IQCorrLC
returns the indexed corrected load cell millivolt value. IQZeroLC returns the indexed load cell deadload millivolt
value. IQStatLC returns the indexed load cell status. IQ2ScaleWt returns the indexed scale weight value. IQSys
and IQPlat are revised to also return the scale data. IQ2StatusLC returns the indexed load cell status. The old
IQStatLC is not supported and will return SysInvalidRequest.

Note

920i Programming Reference - API Reference 45

When using with Firmware 4.xx/iQube2: The IQSys and IQPlat data types will return SysOk as long as the
command is correctly formatted (i.e., scale exists). If you want to know whether the iQube2 is in an error
condition, look at the value (not the syscode) of the IQ2StatusLC data type.

Method Signature:
function GetIqubeData(port_no : integer; dataType : IQValType; index : integer;
data : real) : SysCode;

SysCode values returned:
SysOutOfRange The array index is less than or equal to 0.
SysInvalidRequest The requested port is not configured as an iQube; the value cannot be returned due

to the device configuration, i.e., trying to address load cell 17; certain requests
while the diagnostic screen is open; or an invalid data type is requested.

SysDeviceError The scale is reporting an internal error.
SysOK The function completed successfully.

GetKey
Waits for a key press from the indicator front panel before continuing the program. The optional time-out is
specified in 0.01-second intervals (1/100 seconds); if the wait time is set to zero, the procedure will wait
indefinitely.

Method Signature:
function GetKey (timeout : Integer) : Syscode;

Parameters:
[in] timeout Time-out value

Example:
this_key : Keys;
…
DisplayStatus ("Press [Enter] for Yes");

GetKey(0);
if this_key = EnterKey then
 DisplayStatus ("Yes");
else
 DisplayStatus ("No");

end if;

GetSoftwareVersion
Returns the current software version.

Method Signature:
function GetSoftwareVersion : String;

GetTime
Extracts time information from DT and places the data in variables Hour, Minute, and Second.

Method Signature:
procedure GetTime (DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR
Second : Integer);

Parameters:
[in] DT DateTime variable name
[out] Hour Hour
[out] Minute Minute
[out] Second Second

GetUID
Returns the current unit identifier.

Method Signature:
function GetUID : String;

46 920i Programming Reference

Hardware
Returns an array of HW_type. The elements of the array correspond to option card slots in the 920i. This API is
useful for determining the presence of option cards that are required or that could activate different options in the
user program.

Method Signature:
procedure Hardware(var hw : HW_array_type);

SysCode values returned: None

KeyPress
Provides intrinsic functionality for a key. The following keys will have intrinsic function, in addition to the front
panel keys already in the Keys built-in type: TimeDateKey, WeighInKey, WeighOutKey, ID_EntryKey,
DisplayTareKey, TruckRegsKey, DisplayAccumKey, ScaleSelectKey, DisplayROCKey, SetpointKey,
BatchStartKey, BatchStopKey, BatchPauseKey, BatchResetKey, DiagnosticsKey, ContactsKey, DoneKey,
TestKey. The ContactsKey will actually function like the Dignostics softkey, while the DiagnosticsKey will go
straight to the Diagnostics screen. The DoneKey will only return from the contacts screen. The TestKey will
allow the user program to test for strict weigh mode by not doing anything at all. This API will only function in
actual weigh mode.

Method Signature:
function KeyPress (K : Keys) : SysCode;

SysCode values returned:
SysInvalidMode The indicator is not actually in weigh mode. The TestKey will return

SysInvalidMode for all sub-modes of weigh mode (ie, the contact screen) as well as
any other mode (ie, time & date entry, or open prompt).

SysInvalidKey Any Invalid key. Softkeys and Undefined Keys are considered invalid.
SysInvalidRequest Processing the key returns invalid or error.
SysOK The function completed successfully

LockKey
Disables the specified front panel key. Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey,
PrintKey, Soft1Key, Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey,
NavLeftKey, EnterKey, N1Key, N2Key, N3Key, N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, N0Key,
DecpntKey, ClearKey.

Method Signature:
function LockKey (K : Keys) : SysCode;

Parameters:
[in] K Key name

SysCode values returned:
SysInvalidKey The key specified is not valid.
SysOK The function completed successfully.

ProgramDelay
Pauses the user program for the specified time. Delay time is entered in 0.01-second intervals (1/100 seconds,
100 = 1 second).

Method Signature:
procedure ProgramDelay (D : Integer);

Parameters:
[in] D Delay time

Example:
ProgramDelay(200); -- Pauses the program for 2 seconds.

920i Programming Reference - API Reference 47

ResumeDisplay
Resumes a suspended display.

Method Signature:
procedure ResumeDisplay

SetConsecNum
Sets V to the value of the consecutive number counter.

Method Signature:
function SetConsecNum (V : Integer) : SysCode;

Parameters:
[in] V Consecutive number

SysCode values returned:
SysOutOfRange The value specified is not in the allowed range. The consecutive number is not

changed.
SysOK The function completed successfully.

SetDate
Sets the date in DT to the values specified by Year, Month, and Day.

Method Signature:
function SetDate (VAR DT : DateTime; VAR Year : Integer; VAR Month : Integer; VAR
Day : Integer) : SysCode;

Parameters:
[out] DT DateTime variable name
[in] Year Year
[in] Month Month
[in] Day Day

SysCode values returned:
SysInvalidRequest Year, month, or day entry not valid.
SysOK The function completed successfully.

SetSoftkeyText
Sets the text of softkey K (representing F1–F10) to the text specified by S.

Method Signature:
function SetSoftkeyText (K : Integer; S : String) : SysCode;

Parameters:
[in] K Softkey number
[in] S Softkey text

SysCode values returned:
SysInvalidRequest The value specified for K is less than 1 or greater than 10, or does not represent a

configured softkey.
SysOK The function completed successfully.

SetSystemTime
Sets the realtime clock to the value specified in DT.

Method Signature:
function SetSystemTime (VAR DT : DateTime) : SysCode;

Parameters:
[in] DT System DateTime

SysCode values returned:
SysInvalidRequest Hour or minute entry not valid.
SysOK The function completed successfully.

48 920i Programming Reference

SetTime
Sets the time in DT to the values specified by Hour, Minute, and Second.

Method Signature:
function SetTime (VAR DT : DateTime; VAR Hour : Integer; VAR Minute : Integer; VAR
Second : Integer) : SysCode;

Parameters:
[out] DT DateTime variable name
[in] Hour Hour
[in] Minute Minute
[in] Second Second

SysCode values returned:
SysInvalidRequest Hour or minute entry not valid.
SysOK The function completed successfully.

SetUID
Sets the unit identifier.

Note
Changes made to the UID using the SetUID function are lost when the indicator power is cycled. When
power is restored, the UID is reset to the value at the last SAVE/EXIT from configuration mode.

Method Signature:
function SetUID (newid : String) : SysCode;

Parameters:
[in] newid Unit identifier

SysCode values returned:
SysOutOfRange The unit identifier specified for newid is not in the allowed range. The UID is not

changed.
SysOK The function completed successfully.

STick
Returns the number of system ticks, in 1/1200th of a second intervals, since the indicator was powered on (1200
= 1 second).

Method Signature:
function STick : Integer;

SuspendDisplay
Suspends the display.

Method Signature:
procedure SuspendDisplay;

SystemTime
Returns the current system date and time.

Method Signature:
function SystemTime : DateTime;

Time$
Returns a string representing the system time contained in DT.

Method Signature:
function Time$ (DT : DateTime) : String;

UnlockKey
Enables the specified front panel key. Possible values are: ZeroKey, GrossNetKey, TareKey, UnitsKey, PrintKey,
Soft1Key, Soft2Key, Soft3Key, Soft4Key, Soft5Key, NavUpKey, NavRightKey, NavDownKey, NavLeftKey,
EnterKey, N1Key, N2Key, N3Key, N4Key, N5Key, N6Key, N7Key, N8Key, N9Key, N0Key, DecpntKey,
ClearKey.

920i Programming Reference - API Reference 49

Method Signature:
function UnlockKey (K : Keys) : SysCode;

Parameters:
[in] K Key name

SysCode values returned:
SysInvalidKey The key specified is not valid.
SysOK The function completed successfully.

UnlockKeypad
Enables operation of the entire front panel keypad.

Method Signature:
function UnlockKeypad : SysCode;

SysCode values returned:
SysPermissionDenied
SysOK The function completed successfully.

WaitForEntry()
Similar to GetEntry, WaitForEntry causes the user program to wait for operator input. Wait time is specified in
0.01-second intervals (1/100 seconds); if the wait time is set to zero, the procedure will wait indefinitely or until
the Enter key is pressed.

Note The UserEntry handler must be disabled (see DisableHandler on page 42) before using this procedure.

Method Signature:
procedure WaitForEntry (I : Integer);

Parameters:
[in] I Wait time value

5.3 Serial I/O
Print
Requests a print operation using the print format specified by F. Output is sent to the port specified in the print
format configuration.

Method Signature:
function Print (F : PrintFormat) : SysCode;

Parameters:
[in] F Print format

PrintFormat values sent:
GrossFmt Gross format
NetFmt Net format
TrWInFmt Truck weigh-in format
TrRegFmt Truck register format (truck IDs and tare weights)
TrWOutFmt Truck weigh-out format
SPFmt Setpoint format
AccumFmt Accumulator format
AuxFmtx Auxiliary format

SysCode values returned:
SysInvalidRequest The print format specified by F does not exist.
SysQFull The request could not be processed because the print queue is full.
SysOK The function completed successfully.

50 920i Programming Reference

Example:
Fmtout : PrintFormat;
…
Fmtout := NetFmt
Print (Fmtout);

Send
Writes the integer or real number specified in <number> to the port specified by P.

Method Signature:
procedure Send (P : Integer; <number>);

Parameters:
[in] P Serial port number

Example:
Send (Port1, 123.55); -- sends the value "123.55" to Port 1.

SendChr
Writes the single character specified to the port specified by P.

Method Signature:
procedure SendChr (P : Integer; character Integer);

Parameters:
[in] P Serial port number

Example:
SendChr (Port1, 65); -- sends upper-case "A" (ASCII 65) to Port 1.

SendNull
Writes a null character (ASCII 00) to the port specified by P.

Method Signature:
procedure SendNull (P : Integer);

Parameters:
[in] P Serial port number

Example:
Send (Port1); -- sends a null character (ASCII 00) to Port 1.

SetPrintText
Sets the value of the user-specified format (1-99) to the text specified. The text can be any string of up to 16
characters; if a string of more than 16 characters is specified, nothing is printed.

Method Signature:
function SetPrintText (fmt_num : Integer ; text : String) : Syscode;

Parameters:
[in] fmt_num User-specified format number
[in] text Print format text

Example:
SetPrintText(1, "User Pgm. Text");

StartStreaming
Starts data streaming for the port number specified by P. Streaming must be enabled for the port in the indicator
configuration.

Method Signature:
function StartStreaming (P : Integer) : SysCode;

Parameters:
[in] P Serial port number

920i Programming Reference - API Reference 51

SysCode values returned:
SysInvalidPort The port number specified for P is not valid.
SysInvalidRequest The port specified for P is not configured for streaming.
SysOK The function completed successfully.

Example:
StartStreaming (1);

StopStreaming
Stops data streaming for the port number specified by P.

Method Signature:
function StopStreaming (P : Integer) : SysCode;

Parameters:
[in] P Serial port number

SysCode values returned:
SysInvalidPort The port number specified for P is not valid.
SysInvalidRequest The port specified for P is not configured for streaming.
SysOK The function completed successfully.

Example:
StopStreaming (1);

Write
Writes the text specified in the <arg-list> to the port specified by P. A subsequent Write or WriteLn
operation will begin where this Write operation ends; a carriage return is not included at the end of the data sent
to the port.

Note
This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send
null characters.

Method Signature:
procedure Write (P : Integer; <arg-list>);

Parameters:
[in] P Serial port number
[in] arg_list Print text

Example:
Write (Port1, "This is a test.");

WriteLn
Writes the text specified in the <arg-list> to the port specified by P, followed by a carriage return and a line
feed (CR/LF). The line feed (LF) can be suppressed by setting the indicator TERMIN parameter for the specified
port to CR in the SERIAL menu configuration. A subsequent Write or WriteLn operation begins on the next
line.

Note
This procedure cannot be used to send null characters. Use the SendChr or SendNull procedure to send
null characters.

Method Signature:
procedure Write (P : Integer; <arg-list>);

Parameters:
[in] P Serial port number
[in] arg_list Print text

Example:
WriteLn (Port1, "This is another test.");

52 920i Programming Reference

5.4 Program Scale
SubmitData
For 920i indicators configured for program scale operation, passes data from a user program to the scale
processor. Weight, mode, and tare values are provided by the user program; the displayed weight is the weight
value minus tare. Gross/net mode is set by the gn parameter regardless of whether a tare value is passed. This
allows display of a net value when the net is known but gross and tare values are not available.

Note that because the user program supplies all weight data, weight data acquisition APIs are not valid for
program scales. When used with program scales, these APIs (including GetGross, GetNet, GetTare) will
typically return a SysCode value of SysInvalidScale. Always check the returned SysCode value of scale-related
APIs to ensure valid data.

Syntax:
function SubmitData (scale : Integer; weight : Real; gn : Mode; units : UnitType;
tare : Real) : SysCode;

SysCode values returned:
SysInvalidScale The scale is not set up as a program scale.
SysOK The function completed successfully.

SubmitDSPData
Submit data to a program scale. This function works much like SubmitData() but has fewer parameters. New to
this function is the dp : Decimal_Type that allows the program to set the decimal point for the display. The call
assumes Gross mode and primary units.

Syntax:
function SubmitDSPData(scale : integer; weight : real; units : string; dp :
Decimal_Type) : SysCode;

SysCode values returned:
SysInvalidScale The scale is not set up as a program scale.
SysOK The function completed successfully.

5.5 Setpoints and Batching

Note
Unless otherwise stated, when an API with a VAR parameter returns a SysCode value other than SysOK,
the VAR parameter is not changed.

DisableSP
Disables operation of setpoint SP.

Method Signature:
function DisableSP (SP : Integer) : SysCode;

Parameters:
[in] SP Setpoint number

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysBatchRunning Setpoint SP cannot be disabled while a batch is running.
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled.
SysOK The function completed successfully.

Example:
DisableSP (4);

EnableSP
Enables operation of setpoint SP.

Method Signature:
function EnableSP (SP : Integer) : SysCode;

920i Programming Reference - API Reference 53

Parameters:
[in] SP Setpoint number

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysBatchRunning Setpoint SP cannot be enabled while a batch is running.
SysInvalidRequest The setpoint specified by SP cannot be enabled or disabled.
SysOK The function completed successfully.

Example:
EnableSP (4);

GetBatchingMode
Returns the current batching mode (BATCHNG parameter).

Method Signature:
function GetBatchingMode : BatchingMode;

BatchingMode values returned:
Off Batching mode is off.
Auto Batching mode is set to automatic.
Manual Batching mode is set to manual.

GetBatchStatus
Sets S to the current batch status.

Method Signature:
function GetBatchStatus (VAR S : BatchStatus) : SysCode;

Parameters:
[out] S Batch status

BatchStatus values returned:
BatchComplete The batch is complete.
BatchStopped The batch is stopped.
BatchRunning A batch routine is in progress.
BatchPaused The batch is paused.

SysCode values returned:
SysInvalidRequest The BATCHNG configuration parameter is set to OFF.
SysOK The function completed successfully.

GetCurrentSP
Sets SP to the number of the current batch setpoint.

Method Signature:
function GetCurrentSP (VAR SP : Integer) : Syscode;

Parameters:
[out] SP Setpoint number

SysCode values returned:
SysInvalidRequest The BATCHNG configuration parameter is set to OFF.
SysBatchNotRunning No batch routine is running.
SysOK The function completed successfully.

Example:
CurrentSP : Integer;
…
GetCurrentSP (CurrentSP);
WriteLn (Port1, "Current setpoint is", CurrentSP);

54 920i Programming Reference

GetSPBand
Sets V to the current band value (BANDVAL parameter) of the setpoint SP.

Method Signature:
function GetSPBand (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Band value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis (BANDVAL) parameter.
SysOK The function completed successfully.

Example:
SP7Bandval : Real;
…
GetSPBand (7, SP7BAndval);
WriteLn (Port1, "Current Band Value of SP7 is", SP7Bandval);

GetSPCaptured
Sets V to the weight value that satisfied the setpoint SP.

Method Signature:
function GetSPCaptured (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Captured weight value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than 100.
SysInvalidRequest The setpoint has no captured value.
SysOK The function completed successfully.

GetSPCount
For DINCNT setpoints, sets Count to the value specified for setpoint SP.

Method Signature:
function GetSPCount (SP : Integer; VAR Count : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[out] Count Count value

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than 100.
SysInvalidRequest The specified setpoint is not a DINCNT setpoint.
SysOK The function completed successfully.

GetSPDuration
For time of day (TOD) setpoints, sets DT to the current trip duration (DURATION parameter) of the setpoint SP.

Method Signature:
function GetSPDuration (SP : Integer; VAR DT : DateTime) : SysCode;

Parameters:
[in] SP Setpoint number
[out] DT Setpoint trip duration

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no DURATION parameter.
SysOK The function completed successfully.

920i Programming Reference - API Reference 55

Example:
SP3DUR : DateTime;
…
GetSPTime (3, SP3DUR);
WriteLn (Port1, "Current Trip Duration of SP3 is", SP3DUR);

GetSPHyster
Sets V to the current hysteresis value (HYSTER parameter) of the setpoint SP.

Method Signature:
function GetSPHyster (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Hysteresis value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis HYSTER) parameter.
SysOK The function completed successfully.

Example:
SP5Hyster : Real;
…
GetSPHyster (5, SP5Hyster);
WriteLn (Port1, "Current Hysteresis Value of SP5 is", SP5Hyster);

GetSPNSample
For averaging (AVG) setpoints, sets N to the current number of samples (NSAMPLE parameter) of the setpoint
SP.

Method Signature:
function GetSPNSample (SP : Integer; VAR N : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[out] N Sample value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysOK The function completed successfully.

Example:
SP5NS : Integer;
…
GetSPNSample (5, SP5NS);
WriteLn (Port1, "Current NSample Value of SP5 is", SP5NS);

GetSPPreact
Sets V to the current preact value (PREACT parameter) of the setpoint SP.

Method Signature:
function GetSPPreact (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Preact value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter.
SysOK The function completed successfully.

56 920i Programming Reference

Example:
SP2Preval : Real;
…
GetSPPreact (2, SP2Preval);
WriteLn (Port1, "Current Preact Value of SP2 is", SP2Preval);

GetSPPreCount
Sets Count to the preact learn interval value (PCOUNT parameter) of setpoint SP.

Method Signature:
function GetSPPreCount (SP : Integer; Count : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[out] Count Preact learn interval value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact learn interval (PCOUNT) parameter.
SysOK The function completed successfully.

Example:
SP3PCount : Integer;
…
GetSPPreCount (3, SP3PCount);
WriteLn (Port1, "Current Preact Learn Value of SP3 is", SP3PCount);

GetSPTime
For time of day (TOD) setpoints, sets DT to the current trip time (TIME parameter) of the setpoint SP.

Method Signature:
function GetSPTime (SP : Integer; VAR DT : DateTime) : SysCode;

Parameters:
[in] SP Setpoint number
[out] DT Current setpoint trip time

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no TIME parameter.
SysOK The function completed successfully.

Example:
SP2TIME : DateTime;
…
GetSPTime (2, SP2TIME);
WriteLn (Port1, "Current Trip Time of SP2 is", SP2TIME);

GetSPValue
Sets V to the current value (VALUE parameter) of the setpoint SP.

Method Signature:
function GetSPValue (SP : Integer; VAR V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Setpoint value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VALUE parameter.
SysOK The function completed successfully.

920i Programming Reference - API Reference 57

Example:
SP4Val : Real;
…
GetSPValue (4, SP4Val);
WriteLn (Port1, "Current Value of SP4 is", SP4Val);

GetSPVover
For checkweigh (CHKWEI) setpoints, sets V to the current overrange value (VOVER parameter) of the setpoint
SP.

Method Signature:
function GetSPVover (SP : Integer; VAR V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Overrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VOVER parameter.
SysOK The function completed successfully.

Example:
SP3VOR : Real;
…
GetSPVover (3, SP3VOR);
WriteLn (Port1, "Current Overrange Value of SP3 is", SP3VOR);

GetSPVunder
For checkweigh (CHKWEI) setpoints, sets V to the current underrange value (VUNDER parameter) of the
setpoint SP.

Method Signature:
function GetSPVunder (SP : Integer; VAR V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[out] V Underrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter.
SysOK The function completed successfully.

Example:
SP4VUR : Real;
…
GetSPVunder (4, SP4VUR);
WriteLn (Port1, "Current Underrange Value of SP4 is", SP4VUR);

PauseBatch
Initiates a latched pause of a running batch process.

Method Signature:
function PauseBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysBatchRunning No batch routine is running.
SysOK The function completed successfully.

58 920i Programming Reference

ResetBatch
Terminates a running, stopped, or paused batch process and resets the batch system.

Method Signature:
function ResetBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysBatchRunning No batch routine is running.
SysOK The function completed successfully.

SetBatchingMode
Sets the batching mode (BATCHNG parameter) to the value specified by M.

Method Signature:
function SetBatchingMode (M : BatchingMode) : SysCode;

Parameters:
[in] SP Setpoint number
[in] M Batching mode

BatchingMode values sent:
Off Batching mode is off.
Auto Batching mode is set to automatic.
Manual Batching mode is set to manual.

SysCode values returned:
SysInvalidMode The batching mode specified by M is not valid.
SysOK The function completed successfully.

SetSPBand
Sets the band value (BANDVAL parameter) of setpoint SP to the value specified by V.

Method Signature:
function SetSPBand (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Band value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no band value (BANDVAL) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:
SP7Bandval : Real;
…
SP7Bandval := 10.0
SetSPBand (7, SP7Bandval);

SetSPCount
For DINCNT setpoints, sets the VALUE parameter of setpoint SP to the value specified by Count.

Method Signature:
function SetSPCount (SP : Integer; Count : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[in] Count Count value

920i Programming Reference - API Reference 59

SysCode values returned:
SysInvalidSetpoint The setpoint number specified by SP is less than 1 or greater than 100.
SysInvalidRequest The specified setpoint is not a DINCNT setpoint.
SysOK The function completed successfully.

SetSPDuration
For time of day (TOD) setpoints, sets the trip duration (DURATION parameter) of setpoint SP to the value
specified by DT.

Method Signature:
function SetSPDuration (SP : Integer; DT : DateTime) : SysCode;

Parameters:
[in] SP Setpoint number
[in] DT Setpoint trip duration

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no DURATION parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:
SP3DUR : DateTime;
…
SP3DUR := 00:3:15
SetSPDuration (3, SP3DUR);

SetSPHyster
Sets the hysteresis value (HYSTER parameter) of setpoint SP to the value specified by V.

Method Signature:
function SetSPHyster (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Hysteresis value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no hysteresis (HYSTER) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:
SP5Hyster : Real;
…
SP5Hyster := 15.0;
SetSPHyster (5, SP5Hyster);

SetSPNSample
For averaging (AVG) setpoints, sets the number of samples (NSAMPLE parameter) of setpoint SP to the value
specified by N.

Method Signature:
function SetSPNSample (SP : Integer; N : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[in] N Sample value

60 920i Programming Reference

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no NSAMPLE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for N is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:
SP5NS : Integer;
…
SP5NS := 10
SetSPNSample (5, SP5NS);

SetSPPreact
Sets the preact value (PREACT parameter) of setpoint SP to the value specified by V.

Method Signature:
function SetSPPreact (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Preact value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact (PREACT) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:
SP2PreVal : Real;
…
SP2PreVal := 30.0;
SetSPPreact (2, SP2PreVal);

SetSPPreCount
Sets the preact learn interval value (PCOUNT parameter) of setpoint SP to the value specified by Count.

Method Signature:
function SetSPPreCount (SP : Integer; Count : Integer) : SysCode;

Parameters:
[in] SP Setpoint number
[in] Count Preact learn interval value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no preact learn interval (PCOUNT) parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOK The function completed successfully.

Example:
SP3PCount : Integer;
…
SP3Pcount := 4;
SetSPPreCount (3, SP3PCount);

SetSPTime
For time of day (TOD) setpoints, sets the trip time (TIME parameter) of setpoint SP to the value specified by DT.

Method Signature:
function SetSPTime (SP : Integer; DT : DateTime) : SysCode;

920i Programming Reference - API Reference 61

Parameters:
[in] SP Setpoint number
[in] DT Setpoint trip time

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no TIME parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for DT is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:
SP2TIME : DateTime;
…
SP2TIME := 08:15:00
SetSPTime (2, SP2TIME);

SetSPValue
Sets the value (VALUE parameter) of setpoint SP to the value specified by V.

Method Signature:
function SetSPValue (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Setpoint value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VALUE parameter.
SysBatchRunning The value cannot be changed because a batch process is currently running.
SysOutOfRange The value specified for V is not in the allowed range for setpoint SP.
SysOK The function completed successfully.

Example:
SP4Val : Real;
…
SP4Val := 350.0;
SetSPValue (4, SP4Val);

SetSPVover
For checkweigh (CHKWEI) setpoints, sets the overrange value (VOVER parameter) of setpoint SP to the value
specified by V.

Method Signature:
function SetSPVover (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Overrange value

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VOVER parameter.
SysOK The function completed successfully.

Example:
SP3VOR : Real;
…
SP3VOR := 35.5
SetSPVover (3, SP3VOR);

62 920i Programming Reference

SetSPVunder
For checkweigh (CHKWEI) setpoints, sets the underrange value (VUNDER parameter) of setpoint SP to the
value specified by V.

Method Signature:
function SetSPVunder (SP : Integer; V : Real) : SysCode;

Parameters:
[in] SP Setpoint number
[in] V Underrange

SysCode values returned:
SysInvalidSetpoint The setpoint specified by SP does not exist.
SysInvalidRequest The setpoint specified by SP has no VUNDER parameter.
SysOK The function completed successfully.

Example:
SP4VUR : Real;
…
SP4VUR := 26.4
SetSPVunder (4, SP4VUR);

StartBatch
Starts or resumes a batch run.

Method Signature:
function StartBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysBatchRunning A batch process is already in progress.
SysOK The function completed successfully.

StopBatch
Stops a currently running batch.

Method Signature:
function StopBatch : SysCode;

SysCode values returned:
SysPermissionDenied The BATCHNG configuration parameter is set to OFF.
SysBatchNotRunning No batch process is running.
SysOK The function completed successfully.

5.6 Digital I/O Control
In the following digital I/O control functions, slot 0 represents the J2 connector on the indicator CPU board and
supports four digital I/O bits (1–4). Digital I/O on expansion boards (slots 1–14) each support 24 bits of I/O (bits
1–24).

GetDigin
Sets V to the value of the digital input assigned to slot S, bit D. GetDigin sets the value of V to 0 if the input is on,
to 1 if the input is off. Note that the values returned are the reverse of those used when setting an output with the
SetDigout function.

Method Signature:
function GetDigin (S : Integer; D : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Slot number
[in] D Bit number
[out] D Digital input status

920i Programming Reference - API Reference 63

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital input.
SysOK The function completed successfully.

Example:
DIGINS0B3 : Integer;
…
GetDigin (0, 3, DIGINS0B3);
WriteLn (Port1, "Digin S0B3 status is", DIGINS0B3);

GetDigout
Sets V to the value of the digital output assigned to slot S, bit D. GetDigout sets the value of V to 0 if the output is
on, to 1 if the output is off. Note that the values returned are the reverse of those used when setting an output with
the SetDigout function.

Method Signature:
function GetDigout (S : Integer; D : Integer; VAR V : Integer) : SysCode;

Parameters:
[in] S Slot number
[in] D Bit number
[out] D Digital output status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output.
SysOK The function completed successfully.

Example:
DIGOUTS0B2 : Integer;
…
GetDigout (0, 2, DIGOUTS0B2);
WriteLn (Port1, "Digout S0B2 status is", DIGOUTS0B2);

SetDigout
Sets value of the digital output assigned to slot S, bit D, to the value specified by V. Set V to 1 to turn the
specified output on; set V to 0 to turn the output off.

Method Signature:
function SetDigout (S : Integer; D : Integer; V : Integer) : SysCode;

Parameters:
[in] S Slot number
[in] D Bit number
[in] D Digital output status

SysCode values returned:
SysInvalidRequest The slot and bit assignment specified is not a valid digital output.
SysOutOfRange The value V must be 0 (inactive) or 1 (active).
SysOK The function completed successfully.

Example:
DIGOUTS0B2 : Integer;
…
DIGOUTS0B2 := 0;
SetDigout (0, 2, DIGOUTS0B2);

5.7 Fieldbus Data
BusImage
BusImage is a data type to allow a user program to pass integer data to and from a fieldbus.

Method Signature:
type BusImage is array[32] of integer;

64 920i Programming Reference

BusImageReal
BusImageReal is a data type to allow a user program to pass real data to and from a fieldbus.

Method Signature:
type BusImageReal is array[32] of real;

GetFBStatus
Returns the status word for the specified fieldbus. See the fieldbus Installation and Programming manual for a
description of the status word format.

Method Signature:
function GetFBStatus (fieldbus_no : Integer; scale_no : Integer; VAR status : Integer) :
SysCode;

Parameters:
[in] fieldbus_no Fieldbus number
[in] scale_no Scale number
[out] status Fieldbus status

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully.

GetImage
For integer data, GetImage returns the content of the BusImage for the specified fieldbus.

Method Signature:
function GetImage (fieldbus_no : Integer; VAR data : BusImage) : SysCode;

Parameters:
[in] fieldbus_no Fieldbus number
[out] BusImage Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully.

GetImageReal

For real data, GetImage returns the content of the BusImageReal for the specified fieldbus.

Method Signature:
function GetImageReal (fieldbus_no : Integer; VAR data : BusImageReal) : SysCode;

Parameters:
[in] fieldbus_no Fieldbus number
[out] BusImageReal Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully.

SetImage
For integer data, SetImage sets the content of the BusImage for the specified fieldbus.

Method Signature:
function SetImage (fieldbus_no : Integer; data : BusImage) : SysCode;

Parameters:
[in] fieldbus_no Fieldbus number
[in] BusImage Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully.

920i Programming Reference - API Reference 65

SetImageReal
For real data, SetImageReal sets the content of the BusImageReal for the specified fieldbus.

Method Signature:
function SetImage (fieldbus_no : Integer; data : BusImageReal) : SysCode;

Parameters:
[in] fieldbus_no Fieldbus number
[in] BusImageReal Bus image

SysCode values returned:
SysInvalidRequest
SysOK The function completed successfully.

5.8 Analog Output Operations
SetAlgout
Sets the analog output card in slot S to the percentage P. Negative P values are set to zero; values greater than
100.0 are set to 100.0.

Method Signature:
function SetAlgout (S : Integer; P : Real) : SysCode;

Parameters:
[in] S Slot number
[in] P Analog output percentage value

SysCode values returned:
SysInvalidPort The specified slot (S) is not a valid analog output.
SysInvalidRequest The analog output is not configured from program control.
SysOK The function completed successfully.

5.9 Pulse Input Operations
ClearPulseCount
Sets the pulse count of the pulse input card in slot S to zero.

Method Signature:
function ClearPulseCount (S : Integer) : SysCode;

Parameters:
[in] S Slot number

SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input.
SysOK The function completed successfully.

PulseCount
Sets C to the current pulse count of the pulse input card in slot S.

Method Signature:
function PulseCount (S : Integer; VAR C : Integer) : SysCode;

Parameters:
[in] S Slot number
[out] C Current pulse count

SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input.
SysOK The function completed successfully.

66 920i Programming Reference

PulseRate
Sets R to the current pulse rate (in pulses per second) of the pulse input card in slot S.

Method Signature:
function PulseRate (S : Integer; VAR R : Integer) : SysCode;

Parameters:
[in] S Slot number
[out] C Current pulse rate

SysCode values returned:
SysInvalidCounter The specified counter (S) is not a valid pulse input.
SysOK The function completed successfully.

5.10 Display Operations
ClosePrompt
Closes a prompt opened by the PromptUser function.

Method Signature:
procedure ClosePrompt;

DisplayStatus
Displays the string msg in the front panel status message area. The length of string msg should not exceed 32
characters.

Method Signature:
procedure DisplayStatus (msg : String);

Parameters:
[in] msg Display text

GetEntry
Retrieves the user entry from a programmed prompt.

Method Signature:
function GetEntry : String;

PromptUser
Opens the alpha entry box and places the string msg in the user prompt area.

Method Signature:
function PromptUser (msg : String) : SysCode;

Parameters:
[in] msg Prompt text

SysCode values returned:
SysRequestFailed The prompt could not be opened.
SysOK The function completed successfully.

SelectScreen
Selects the configured screen, N, to show on the indicator display.

Method Signature:
function SelectScreen (N : Integer) : SysCode;

Parameters:
[in] N Screen number

SysCode values returned:
SysInvalidRequest The value specified for N is less than 1 or greater than 10.
SysOK The function completed successfully.

920i Programming Reference - API Reference 67

SetEntry
Sets the user entry for a programmed prompt. This procedure can be used to provide a default value for entry box
text when prompting the operator for input. Up to 1000 characters can be specified.

Method Signature:
procedure SetEntry (S : String);

5.11 Display Programming
ClearGraph
Clears a graph by setting all elements of a DisplayImage array to zero.

Method Signature:
procedure ClearGraph (VAR graph_array : DisplayImage);

Parameters:
[out] graph_array Graph identifier

DrawGraphic
Displays or erases a graphic defined in the bitmap.iri file incorporated into the user program source (.src) file.
See Section 6.6 on page 92 for more information about display programming.

Method Signature:
function DrawGraphic (gr_num : Integer; x_start : Integer; y_start : Integer;
bitmap : DisplayImage; color : Color_type; height : Integer; width : Integer) :
SysCode;

Parameters:
[in] gr_num Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] bitmap Graphic bitmap
[in] color Color type
[in] height Graphic height
[in] width Graphic width

SysCode values returned:
SysDeviceError The value specified for gr_num is greater than 100.
SysOK The function completed successfully.

Setting up a graph requires several functions that must be performed in the following order:

•GraphCreate assigns storage and defines the type of graph
•GraphInit sets the location of the graph on the display
•GraphScale sets the value bounds for the graph
•GraphPlot is used to actually plot the graph on the display

GraphCreate
GraphCreate assigns storage and defines the graph display type for use by other graphing functions.

Method Signature:
function GraphCreate (graphic_no : Integer; bitmap : DisplayImage; color :
Color_type; kind : GraphType) : SysCode;

Parameters:
[in] graphic_no Graphic number
[in] bitmap Bitmap
[in] color Graphic color
[in] kind Graphic kind

SysCode values returned:
SysInvalidRequest The DisplayImage specified by bitmap does not exist.
SysOK The function completed successfully.

68 920i Programming Reference

Example:
G_Graph1 : DisplayImage;
 result : Syscode;
begin
 result := GraphCreate(1, G_Graph1, Black, Bar);
 if result = SysOK then
 result :=GraphInit(71,30,60,110,240);
 end if;
end;

GraphInit
GraphInit sets the location of the graph on the display. x_start and y_start values specify the distance, in
pixels, from top left corner of the display at which the top left corner of the graph is shown. height and width
specify the graph size, in pixels. (Full display size is 240 pixels high by 320 pixels wide.)

Method Signature:
function GraphInit (graphic_no : Integer; x_start : Integer; y_start : Integer;
height : Integer; width : Integer) : SysCode;

Parameters:
[in] graphic_no Graphic number
[in] x_start X-axis starting pixel location
[in] y_start Y-axis starting pixel location
[in] bitmap Graphic bitmap
[in] color Color type
[in] height Graphic height
[in] width Graphic width

SysCode values returned:
SysInvalidRequest The DisplayImage specified by bitmap does not exist.
SysOutOfRange Specified parameters exceed display height or width, or are too small to

accommodate the graphic.
SysDeviceError Internal error
SysOK The function completed successfully.

Example:
G_Graph1 : DisplayImage;
 result : Syscode;
begin
 result := GraphCreate(1, G_Graph1, Black, Bar);
 if result = SysOK then
 result :=GraphInit(71,30,60,110,240);
 end if;
end;

GraphPlot
GraphPlot plots the graph previously set up using the GraphCreate, GraphInit, and GraphScale functions. The
graph appears as a histogram: each GraphPlot call places a bar or line at the right edge of the graph, moving
values from previous calls to the left. The width of the bar, in pixels, is specified by width parameter. The
maximum width value is 8; larger values are reduced to 8. If the y_value is beyond the bounds set by
GraphScale, the bar is plotted to the maximum or minimum value.

Method Signature:
function GraphPlot (graphic_no : Integer; y_value : Real; width : Integer; color :
Color_type) : SysCode;

Parameters:
[in] graphic_no Graphic number
[in] y_value Pixel height of histogram
[in] color Color type
[in] width Pixel width of moving bar

920i Programming Reference - API Reference 69

SysCode values returned:
SysInvalidRequest Graph not initialized.
SysOK The function completed successfully.

Example:
 result : Syscode;
 weight : real;

begin
 GetGross(1,Primary,weight);
 result := GraphPlot(1, weight, 1, Black);
end;

GraphScale
GraphScale sets the minimum and maximum x and y values for a graph. Currently, only the y values are used for
the histogram displays; x values are reserved for future use, but must be present in the call.

Method Signature:
function GraphScale (graphic_no : Integer; x_min : Real; x_max : Real; y_min :
Real; y_max : Real) : SysCode;

Parameters:
[in] graphic_no Graphic number
[in] x_min Minimum x-axis value
[in] x_max Maximum x-axis value)
[in] y_min Minimum y-axis value
[in] y-max Maximum y-axis value

SysCode values returned:
SysInvalidRequest Graph not initialized.
SysOutOfRange A minimum value (x_min or y_min) is greater than its specified max value.
SysOK The function completed successfully.

Example:
GraphScale(1, 10.0, 50000.0, 0.0, 10000.0);

SetBargraphLevel
Sets the displayed level of bargraph widget W to the percentage (0–100%) specified by Level.

Method Signature:
function SetBargraphLevel (W : Integer; Level : Integer) : SysCode;

Parameters:
[in] W Bargraph widget number
[in] Level Bargraph widget level

SysCode values returned:
SysInvalidWidget The bargraph widget specified by W does not exist.
SysOK The function completed successfully.

SetLabelText
Sets the text of label widget W to S.

Method Signature:
function SetLabelText (W : Integer; S : String) : SysCode;

Parameters:
[in] W Label widget number
[in] S Label widget text

SysCode values returned:
SysInvalidWidget The label widget specified by W does not exist.
SysOK The function completed successfully.

70 920i Programming Reference

SetNumericValue
Sets the value of numeric widget W to V.

Method Signature:
function SetNumericValue (W : Integer; V : Real) : SysCode;

Parameters:
[in] W Numeric widget number
[in] V Numeric widget value

SysCode values returned:
SysInvalidWidget The numeric widget specified by W does not exist.
SysOK The function completed successfully.

SetSymbolState
Sets the state of symbol widget W to S. The widget state determines the variant of the widget symbol displayed.
All widgets have at least two states (values 1 and 2); some have three (3). See Section 9.0 of the 920i Installation
Manual for descriptions of the symbol widget states.

Method Signature:
function SetSymbolState (W : Integer; S : Integer) : SysCode;

Parameters:
[in] W Symbol widget number
[in] S Symbol widget state

SysCode values returned:
SysInvalidWidget The symbol widget specified by W does not exist.
SysOK The function completed successfully.

SetWidgetVisibility
Sets the visibility state of widget W to V.

Method Signature:
function SetWidgetVisibility (W : Integer; V : OnOffType) : SysCode;

Parameters:
[in] W Widget number
[in] V Widget visibility

SysCode values returned:
SysInvalidWidget The widget specified by W does not exist.
SysOK The function completed successfully.

5.12 Event Handlers
BusCommandHandler
When enabled, this event handler is activated when new data arrives on a field bus option card. SetImage() must
be called before BusCommandHandler() will be activated again. A new activation of the handler can occur when
new data is present on the bus.

Method Signature:
BusCommandHandler()

xKeyReleased
This class of event handlers is activated when a key is released. The "x" is replaced with the name of the key. Key
names are the same as for the xKeyPressed handlers. Note that the xKeyReleased handlers are subject to the
same timing considerations as all other user handlers. The events are queued in the order they are detected. Any
handler that involves lengthy operations may delay the start of other handlers.

Method Signature:
handler xKeyReleased;

920i Programming Reference - API Reference 71

5.13 Database Operations
<DB>.Add
Adds a record to the referenced database. Using this function invalidates any previous sort operation.

Method Signature:
function <DB>.Add : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysDatabaseFull There is no space in the specified database for this record.
SysOK The function completed successfully.

<DB>.Clear
Clears all records from the referenced database.

Method Signature:
function <DB>.Clear : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysOK The function completed successfully.

<DB>.Delete
Deletes the current record from the referenced database. Using this function invalidates any previous sort
operation.

Method Signature:
function <DB>.Delete : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

The following <DB.Find> functions allow a database to be searched. Column I is an alias for the field name,
generated by the "Generate iRev import file" operation. The value to be matched is set in the working database
record, in the field corresponding to column I, before a call to <DB>.FindFirst or <DB>.FindLast.

<DB>.FindFirst
Finds the first record in the referenced database that matches the contents of <DB> column I.

Method Signature:
function <DB>.FindFirst (I : Integer) : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysNoSuchColumn The column specified by I does not exist.
SysOK The function completed successfully.

<DB>.FindLast
Finds the last record in the referenced database that matches the contents of <DB> column I.

Method Signature:
function <DB>.FindLast (I : Integer) : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysNoSuchColumn The column specified by I does not exist.
SysOK The function completed successfully.

72 920i Programming Reference

<DB>.FindNext
Finds the next record in the referenced database that matches the criteria of a previous FindFirst or FindLast
operation.

Method Signature:
function <DB>.FindNext : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.FindPrev
Finds the previous record in the referenced database that matches the criteria of a previous FindFirst or FindLast
operation.

Method Signature:
function <DB>.FindLast : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetFirst
Retrieves the first logical record from the referenced database.

Method Signature:
function <DB>.GetFirst : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetLast
Retrieves the last logical record from the referenced database.

Method Signature:
function <DB>.GetLast : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetNext
Retrieves the next logical record from the referenced database.

Method Signature:
function <DB>.GetNext : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.GetPrev
Retrieves the previous logical record from the referenced database.

Method Signature:
function <DB>.GetPrev : SysCode;

920i Programming Reference - API Reference 73

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.Sort
Sorts database <DB> into ascending order based on the contents of column I. The sort table supports a maximum
of 30 000 elements. Databases with more than 30 000 records cannot be sorted.

Method Signature:
function <DB>.Sort (I : Integer) : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

<DB>.Update
Updates the current record in the referenced database with the contents of <DB>. Using this function invalidates
any previous sort operation.

Method Signature:
function <DB>.Update : SysCode;

SysCode values returned:
SysNoSuchDatabase The referenced database cannot be found.
SysNoSuchRecord The requested record is not contained in the database.
SysOK The function completed successfully.

5.14 Timer Controls
Thirty-two timers, configurable as either continuous and one-shot timers, can be used to generate events at some
time in the future. The shortest interval for which a timer can be set is 10 ms.

ResetTimer
Resets the value of timer T (1–32) by stopping the timer, setting the timer mode to TimerOneShot, and setting the
timer time-out to 1.

Parameters:
[in] T Timer number

Method Signature:
function ResetTimer (T : Integer) : Syscode;

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

ResumeTimer
Restarts a stopped timer T (1–32) from its stopped value.

Method Signature:
function ResumeTimer (T : Integer) : Syscode;

Parameters:
[in] T Timer number

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

74 920i Programming Reference

SetTimer
Sets the time-out value of timer T (1–32). Timer values are specified in 0.01-second intervals (1= 10 ms, 100 =
1 second). For one-shot timers, the SetTimer function must be called again to restart the timer once it has expired.

Method Signature:
function SetTimer (T : Integer ; V : Integer) : Syscode;

Parameters:
[in] T Timer number
[in] V Timer value

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

SetTimerDigout
SetTimer Digout is used to provide precise control of state changes for timers using TimerDigoutOff or
TimerDigoutOn modes. The state of the specified digital output (slot S, bit D)is changed when timer T (1–32)
expires.

Method Signature:
function SetTimer (T : Integer ; S : Integer ; D: Integer) : Syscode;

Parameters:
[in] T Timer number
[in] S Digital I/O slot number
[in] D Digital I/O bit number

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

Example:
SetTimer(1,100); -- Set value of Timer1 to 100 (1 second)
SetTimerMode(1,TimerDigoutOn); -- Set timer mode to turn on the digital output
SetTimerDigout(1,0,1); -- Set which digital output to control (slot 0, bit 1)
StartTimer(1); -- Start timer

SetTimerMode
Sets the mode value, M, of timer T (1–32). This function, normally included in a program startup handler, only
needs to be called once for each timer unless the timer mode is changed.

Method Signature:
function SetTimer (T : Integer ; M : TimerMode) : Syscode;

Parameters:
[in] T Timer number
[in] M Timer mode

TimerMode values sent:
TimerOneShot Timer mode is set to one-shot.
TimerContinuous Timer mode is set to continuous.
TimerDigOutOff One-shot timer sets a digital output off when the timer expires.
TimerDigOutOn One-shot timer sets a digital output on when the timer expires.

SysCode values returned:
SysInvalidTimer The timer specified by T is a not valid timer.
SysInvalidState The timer specified by M is a not valid timer mode.
SysInvalidRequest The slot or bit number configured is not a valid digital output .
SysOK The function completed successfully.

920i Programming Reference - API Reference 75

StartTimer
Starts timer T (1–32). For one-shot timers, this function must be called each time the timer is used. Continuous
timers are started only once; they do not require another call to StartTimer unless stopped by a call to the
StopTimer function.

Method Signature:
function StartTimer (T : Integer) : Syscode;

Parameters:
[in] T Timer number

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

StopTimer
Stops timer T (1–32).

Method Signature:
function StopTimer (T : Integer) : Syscode;

Parameters:
[in] T Timer number

SysCode values returned:
SysInvalidTimer The timer specified by T a not valid timer.
SysOK The function completed successfully.

5.15 Mathematical Operations
Abs
Returns the absolute value of x.

Method Signature:
function Abs (x : Real) : Real;

ATan
Returns a value between –/2 and /2, representing the arctangent of x in radians.

Method Signature:
function Atan (x : Real) : Real;

Ceil
Returns the smallest integer greater than or equal to x.

Method Signature:
function Ceil (x : Real) : Integer;

Cos
Returns the cosine of x. x must be specified in radians.

Method Signature:
function Cos (x : Real) : Real;

Exp
Returns the value of ex.

Method Signature:
function Exp (x : Real) : Real;

Log
Returns the value of loge(x).

Method Signature:
function Log (x : Real) : Real;

76 920i Programming Reference

Log10
Returns the value of log10(x).

Method Signature:
function Log10 (x : Real) : Real;

Sign
Returns the sign of the numeric operand. If x < 0, the function returns a value of –1; otherwise, the value returned
is 1.

Method Signature:
function Sign (x : Real) : Integer;

Sin
Returns the sine of x. x must be specified in radians.

Method Signature:
function Sin (x : Real) : Real;

Sqrt
Returns the square root of x.

Method Signature:
function Sqrt (x : Real) : Real;

Tan
Returns the tangent of x. x must be specified in radians.

Method Signature:
function Tan (x : Real) : Real;

5.16 Bit-wise Operations
BitAnd
Returns the bit-wise AND result of X and Y.

Method Signature:
function BitAnd (X : Integer; Y : Integer) : Integer;

BitNot

Returns the bit-wise NOT result of X.

Method Signature:
function BitNOT (X : Integer) : Integer;

BitOr
Returns the bit-wise OR result of X and Y.

Method Signature:
function BitOr (X : Integer; Y : Integer) : Integer;

BitXor
Returns the bit-wise exclusive OR (XOR) result of X and Y.

Method Signature:
function BitXor (X : Integer; Y : Integer) : Integer;

5.17 Built-in Types
BatchingMode
type BatchingMode is (Off, Auto, Manual);

BatchStatus
type BatchStatus is (BatchComplete, BatchStopped, BatchRunning, BatchPaused);

920i Programming Reference - API Reference 77

BusImage
type BusImage is array[32] of integer;

Color_type
type Color_type is (White, Black);

DataArray
type DataArray is array[300] of real;

Decimal_type
type Decimal_type is (DP_8_888888, DP_88_88888, DP_888_8888, DP_8888_888, DP_88888_88,
DP_888888_8, DP_8888888, DP_8888880, DP_8888800, DP_DEFAULT);

DisplayImage
type DisplayImage is array[2402] of integer; Type DisplayImage is for user graphics and will hold the largest
displayable user graphic.

DTComponent
type DTComponent is (DateTimeYear, DateTimeMonth, DateTimeDay, DateTimeHour, DateTimeMinute,
DateTimeSecond);

ExtFloatArray
type ExtFloatArray is array[5] of integer;

GraphType
type GraphType is (Line, Bar, XY);

HW_array_type
type HW_array_type is array[14] of HW_type; Used with the Hardware() API, each element of the array
represents a 920i expansion slot.

HW_type
type HW_type is (NoCard, DualSerial, DualAtoD, SingleAtoD, AnalogOut, DigitalIO, Pulse, Memory,
reservedcard, DeviceNet, Profibus, reserved2card, ABRIO, reserved3card, DSP2000, AnalogInput, Ethernet);
Each of the enumerations represent a kind of option card for the 920i.

Keys
type Keys is (Soft4Key, Soft5Key, GrossNetKey, UnitsKey, Soft3Key, Soft2Key, Soft1Key, ZeroKey,
Undefined3Key, Undefined4Key, TareKey, PrintKey, N1KEY, N4KEY, N7KEY, DecpntKey, NavUpKey,
NavLeftKey, EnterKey, Undefined5Key, N2KEY, N5KEY, N8KEY, N0KEY, Undefined1Key, Undefined2Key,
NavRightKey, NavDownKey, N3KEY, N6KEY, N9KEY, ClearKey);

Mode
type Mode is (GrossMode, NetMode);

OnOffType
type OnOffType is (VOff, VOn);

PrintFormat
type PrintFormat is (GrossFmt, NetFmt, AuxFmt, TrWInFmt, TrRegFmt, TrWOutFmt, SPFmt, AccumFmt,
AlertFmt);

SysCode
type SysCode is (SysOk, SysLFTViolation, SysOutOfRange, SysPermissionDenied, SysInvalidScale,
SysBatchRunning, SysBatchNotRunning, SysNoTare, SysInvalidPort, SysQFull, SysInvalidUnits,
SysInvalidSetpoint, SysInvalidRequest, SysInvalidMode, SysRequestFailed, SysInvalidKey, SysInvalidWidget,
SysInvalidState, SysInvalidTimer, SysNoSuchDatabase, SysNoSuchRecord, SysDatabaseFull,
SysNoSuchColumn, SysInvalidCounter, SysDeviceError, SysInvalidChecksum, SysDatabaseAccessTimeout);

TareType
type TareType is (NoTare, PushbuttonTare, KeyedTare);

78 920i Programming Reference

TimerMode
type TimerMode is (TimerOneShot, TimerContinuous, TimerDigoutON, TimerDigoutOFF);

Units
type Units is (Primary, Secondary, Tertiary);

UnitType
type UnitType is (kilogram, gram, ounce, short_ton, metric_ton, grain, troy_ounce, troy_pound, long_ton,
custom, none, pound);

WgtMsg
type WgtMsg is array[12] of integer;

5.18 String Operations
Asc
Returns the ASCII value of the first character of string S. If S is an empty string, the value returned is 0.

Method Signature:
function Asc (S : String) : Integer;

Chr$
Returns a one-character string containing the ASCII character represented by I.

Method Signature:
function Chr$ (I : Integer) : String;

Hex$
Returns an eight-character hexadecimal string equivalent to I.

Method Signature:
function Hex$ (I : Integer) : String;

LCase$
Returns the string S with all upper-case letters converted to lower case.

Method Signature:
function LCase$ (S : String) : String;

Left$
Returns a string containing the leftmost I characters of string S. If I is greater than the length of S, the function
returns a copy of S.

Method Signature:
function Left$ (S : String; I : Integer) : String;

Len
Returns the length (number of characters) of string S.

Method Signature:
function Len (S : String) : Integer;

Mid$
Returns a number of characters (specified by length) from string s, beginning with the character specified by
start. If start is greater than the string length, the result is an empty string. If start + length is greater
than the length of S, the returned value contains the characters from start through the end of S.

Method Signature:
function Mid$ (S : String; start : Integer; length : Integer) : String;

Oct$
Returns an 11-character octal string equivalent to I.

Method Signature:
function Oct$ (I : Integer) : String;

920i Programming Reference - API Reference 79

Right$
Returns a string containing the rightmost I characters of string S. If I is greater than the length of S, the function
returns a copy of S.

Method Signature:
function Right$ (S : String; I : Integer) : String;

Space$
Returns a string containing N spaces.

Method Signature:
function Space$ (N : Integer) : String;

UCase$
Returns the string S with all lower-case letters converted to upper case.

Method Signature:
function UCase$ (S : String) : String;

5.19 Data Conversion
IntegerToString
Returns a string representation of the integer I with a minimum length of W. If W is less than zero, zero is used as
the minimum length. If W is greater than 100, 100 is used as the minimum length.

Method Signature:
function IntegerToString (I : Integer; W : Integer) : String;

RealToString
Returns a string representation of the real number R with a minimum length of W, with P digits to the right of the
decimal point. If W is less than zero, zero is used as the minimum length; if W is greater than 100, 100 is used as
the minimum length. If P is less than zero, zero is used as the precision; if P is greater than 20, 20 is used.

Method Signature:
function RealToString (R : Real; W : Integer; P: Integer) : String;

StringToInteger
Returns the integer equivalent of the numeric string S. If S is not a valid string, the function returns the value 0.

Method Signature:
function StringToInteger (S : String) : Integer;

StringToReal
Returns the real number equivalent of the numeric string S. If S is not a valid string, the function returns the
value 0.0.

Method Signature:
function StringToReal (S : String) : Real;

5.20 High Precision
DecodeExtFloat
A five-byte IEEE-1594 extended floating point number, expressed as an array or bytes, is converted to a standard
4-byte floating point real. NaN and infinity are processed. If a number is too small to convert to 4-byte precision,
zero is returned. If a number is too large to convert to 4-byte precision, infinity is returned.

Method Signature:
function DecodeExtFloat(weight : ExtFloatArray) : real;

EncodeExtFloat
Converts a 4-byte floating point real to a 5-byte IEEE-1394 extended floating point number in the form of an
array of five bytes.

80 920i Programming Reference

Method Signature:
function EncodeExtFloat(weight : real) : ExtFloatArray;

DecodeMessage
An entire measured value response message is partially decoded. Use with DecodeWeight() to decode all
parameters. This routine takes an entire measured value response message (from byte count to checksum) and
decodes the quarter-D bit, the weighing range, stability, and the verified bit. Enumerations are returned as
integers specified in the Sartorius xBPI protocol documentation.

Method Signature:
function DecodeMessage(msg : WgtMsg; var qd : integer; var range : integer; var
stability : integer; var verified : integer) : SysCode;

SysCode values returned:
SysInvalidChecksum The message checksum is incorrect.
SysOK The function completed successfully.

DecodeWeight
An entire measured value response message is partially decoded. Use with DecodeMessage() to decode all
parameters. This routine takes an entire measured value response message (from byte count to checksum) and
decodes the weight, decimal point, units, and status. Enumerations are returned as integers specified in the
Sartorius xBPI protocol documentation.

Method Signature:
function DecodeWeight(msg : WgtMsg; var weight : real; var dp : integer; var units
: integer; var status : integer) : SysCode;

SysCode values returned:
SysInvalidChecksum The message checksum is incorrect.
SysOK The function completed successfully.

InitHiPrec
Establishes communications with an RS-485 Sartorius platform. Sends a BREAK signal to the platform, then
sets communications parameters for xBPI protocol, RS-485, 9600 baud, 8-bit odd parity, two stop bits. 920i
indicator must have port set up accordingly. The platform parameters set by InitHiPrec() are: * Set baud rate to
9600 * Delete tare and application tares * The following are parameter table settings * Allow changes in the
Parameter Table (setting 40) * Standard Weighing Mode (setting 2) * Stability Range (setting 3) * Stability
Symbol Delay (setting 4) * Auto Zero (setting 6) * Zero Range (setting 11) * Power-On Zero Range (setting 12)
* Power-On Tare or Zeroing (setting 13) * Normal Output of Measured Values (setting 14) * Calibration Prompt
Off (setting 15) * Only one Weighing Range (setting 25) * Weight Units = Kilograms (setting 7) * Basic
Accuracy (setting 8) * Communication Type = xBPI (setting 35) * Data Output at Defined Intervals = Auto
(setting 38) * Allow Tare and Zero without standstill (setting 5) Setting numbers are the Sartorius parameter table
setting numbers.

Method Signature:
function InitHiPrec(port_no : integer) : SysCode;

SysCode values returned:
SysRequestFailed The function did not complete.
SysOK The function completed successfully.

SubmitMessage
An entire Sartorius weight response message (from byte count to checksum) is decoded and submitted to a scale
for display. The scale must be setup as a Program Scale.

Method Signature:
function SubmitMessage(scale : integer; msg : WgtMsg) : SysCode;

SysCode values returned:
SysInvalidChecksum The message checksum is incorrect.
SysOK The function completed successfully.
SysInvalidScale The scale is not a Program Scale.

920i Programming Reference - API Reference 81

5.21 USB
User program access to the USB file system requires new APIs for the user program to manipulate and use these
files. A user program may have only one file open at a time. Once opened, any further file accesses will be to that
file.

USBFileOpen(filename : string; mode : FileAccessMode) : Syscode
This API is used to read a file from the flash drive. Opening a file as Read positions the internal pointer at the
start of the file. Opening a file as Create or Append positions the internal pointer at the end of the file. Any
attempt to read a file opened as Create or Append will return SysEndOfFile.
Parameters:
Filename - The 920i will look in a folder named whatever the 920i's UID is set for (defaulted to 1) for the
filename sent as the parameter. Use the entire path (without the drive). For example, if your file is stored on C:/
Examples/USB/Testing.txt the parameter would be: Examples/USB/Testing.txt
FileAccessMode - A new enumeration (see Section 4.0) with the choices of FileCreate, FileAppend, or
FileRead.

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy
SysFileNotFound
SysDirectoryNotFound

SysFileExists
SysInvalidFileFormat
SysBadFilename (over 8 characters)
SysEndOfFile

Example:
USBFileOpen(Testing.txt, FileCreate); --Creates a new empty file called Testing.txt.
USBFileOpen(test,FileAppend); --Adds to a currently stored file called Testing.txt
USBFileOpen(test,FileRead); --Reads from a currently stored file

 USBFileClose()
This API is used to close a currently opened file (see USBFileOpen). A file must be closed before device
removal or the file contents may be corrupted.

No parameters.

SysCode values returned:
SysOk
SysNoFileSystemFound

SysMediaChanged
SysNoFileOpen

USBFileDelete(filename : string)
This API deletes a file saved to the USB drive. To overwrite an existing file, the user program should first delete
the file, then reopen it with Create access.

Parameters:

Filename - The 920i will look in a folder named whatever the 920i's UID is set for (defaulted to 1) for the
filename sent as the parameter.

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy

SysFileNotFound
SysDirectoryNotFound
SysBadfilename

Example:

USBFileDelete(Testing.txt);

82 920i Programming Reference

USBFileExists(filename : string)
This API checks to see if a file exists on the USB drive.

Parameters:

Filename - The 920i will look in a folder named whatever the 920i's UID is set for (defaulted to 1) for the
filename sent as the parameter.

SysCode values returned:
SysOk
SysNoFileSystemFound
SysPortBusy

SysInvalidMode
SysBadfilename

Example:

USBFileExists(Testing.txt);

ReadLn(var data : string)
This API will read a string from whatever file is currently open. The string will be placed in a
string-type-variable that must be defined.

Parameters:

Data: This is the string type variable that they data will be placed in to display or print or otherwise be used by
the program. It reads one line at a time and the entire line is in this string.

SysCode values returned:
SysOk
SysNoFileOpen
SysMediaChanged

SysNoFileSystemFound
SysEndOfFile

Example:

Result := ReadLn(sTempString); --Reads a line of data from whatever file is open

while Result <> SysEndOfFile --Loops, looking at the return code until the end

loop

 Result := ReadLn(sTempString);

 WriteLn(3, sTempString); --Prints each line read out Port 3

end loop;

WriteLn(port : integer; data : string)

Write(port : integer; data : string)
These APIs both writ out a port (and are not new to USB but can be used by the USB). If writing to the USB
drive it will append the string to the end of the currently open file. The only difference between the two is the
WriteLn sends a carriage return/line feed at the end, and Write does not.

Parameters:

Port - Whichever port on the 920i the data will be sent out of. Port 2 is used for USB.

Example - see ReadLn.

GetUSBStatus() : Syscode
This API returns the most recent status report for the USB port. This is useful for validating a Write or WriteLn.

Example:

Result := GetUSBStatus;

GetUSBAssignment() : deviceType
Returns the DeviceType currently in use.

Example:

dDevice := GetUSBAssignment; -- verify the assignment

920i Programming Reference - API Reference 83

if dDevice = USBFileSystem then

 WriteLn(3,"USBFlashDrive");

elsif dDevice = USBHostPC then

 WriteLn(OutPort,"USBHostPC");

elsif dDevice = USBPrinter2 then

 WriteLn(OutPort,"USBPrinter2");

elsif dDevice = USBPrinter1 then

 WriteLn(OutPort,"USBPrinter1");

elsif dDevice = USBKeyboard then

 WriteLn(OutPort,"USBKeyboard");

else

 WriteLn(OutPort,"Device Unknown");

end if;

SetUSBAssignment(device : deviceType)
Selects a secondary device for current use, capturing the current device as primary.

Parameters: device (see Section 4.0).

SysCode values returned:
SysOk
SysDeviceNotFound

SysPortBusy

Example:

SetUSBAssignment(USBHostPC);

ReleaseUSBAssignment()
Returns the current USB device to the captured primary device.

SysCode values returned:
SysOk
SysDeviceNotFound

SysPortBusy

Example:

ReleaseUSBAssignment;

IsUSBDevicePresent(device : deviceType)
Checks to see if the device passed is there or not.

Parameters: device (see Section 4.0).

SysCode values returned:
SysOk SysDeviceNotFound

Example:

Result := IsUSBDevicePresent(USBFileSystem);

if Result <> SysOk then

 WriteLn(OutPort,"Flash Drive Not Found");

else

 WriteLn(OutPort,"SysOK");

end if;

84 920i Programming Reference

SetFileTermin(termin : LineTermination)
This determines what is appended at the end of each line.

Termin - See Section 4.0 for LineTermination type options.

Example:

SetFileTermin(FileCRLF);

DBLoad(database name)
Opens a file in Read mode using the name of the database and the Unit ID and calls the core to process it as a
database file. The file is closed when done.

SysCode values returned:
SysOk
SysNoSuchDatabase
SysNoFileSystemFound
SysFileAlreadyOpen

SysFileNotFound
SysDirectoryNotFound
SysInvalidFileFormat
SysPortBusy

Example:

if DBLoad("Product") = Sysok then

 DisplayStatus("Product Database Loaded into 920i")

end if;

DBSave(database name)
Opens a file in Create mode using the name of the database and the Unit ID and calls the core to process it as a
database file. File is closed when done. For example if the Unit ID in the 920i was 5, it would store a file to E:/
5/Product.txt. (If your computer recognized the thumb drive as drive E).

SysCode values returned:
SysOk
SysNoSuchDatabase
SysNoFileSystemFound
SysFileAlreadyOpen

SysFileNotFound
SysDirectoryNotFound
SysFileExists
SysPortBusy

Example:

if DBSave("Product") = Sysok then

 DisplayStatus("Product Database Saved to thumb drive")

end if;

SysCodeToString(code : SysCode)
Returns the name of the SysCode as a string (so it can be printed or displayed).

Example:

Result := SetFileTermin(FileCRLF);

if Result <> SysOk then

 WriteLn(3,(SysCodeToString(Result)));--Makes the syscode able to be printed

else

 WriteLn(3,"SysOK");

end if;

920i Programming Reference - Appendix 85

6.0 Appendix

6.1 Event Handlers
Handler Description

AlertHandler Runs when an error is generated from an attached iQUBE. Use the EventString function to
retrieve the error message displayed by the 920i.

BusCommandHandler Runs when data is received on the fieldbus.

ClearKeyPressed Runs when the CLR key on the numeric keypad is pressed

ClearKeyReleased Runs when the CLR key on the numeric keypad is released

CmdxHandler Runs when an F#x serial command is received on a serial port, where x is the F# command
number, 1–32. The communications port number receiving the command and the text
associated with the F#x command can be returned from the CmdxHandler using the
EventPort and EventString functions (see page 43).

DiginSxByActivate Runs when the digital input assigned to slot x, bit y is activated. Valid bit assignments for slot 0
are 1–4; valid bit assignments for slots 1 through 14 are 1–24.

DiginSxByDeactivate Runs when the digital input assigned to slot x, bit y is deactivated. Valid bit assignments for
slot 0 are 1–4; valid bit assignments for slots 1 through 14 are 1–24.

DotKeyPressed Runs when the decimal point key on the numeric keypad is pressed

DotKeyReleased Runs when the decimal point key on the numeric keypad is released

EnterKeyPressed Runs when the ENTER key on the front panel is pressed

EnterKeyReleased Runs when the ENTER key on the front panel is released

GrossNetKeyPressed Runs when the GROSS/NET key is pressed

GrossNetKeyReleased Runs when the GROSS/NET key is released

KeyPressed Runs when any front panel key is pressed. Use the EventKey function within this handler to
determine which key caused the event.

KeyReleased Runs when any front panel key is released. Use the EventKey function within this handler to
determine which key caused the event.

MajorKeyPressed Runs when any of the five preceding major keys is pressed. Use the EventKey function within
this handler to determine which key caused the event.

MajorKeyReleased Runs when any of the five preceding major keys is released. Use the EventKey function within
this handler to determine which key caused the event.

NavDownKeyPressed Runs when the DOWN navigation key is pressed

NavDownKeyReleased Runs when the DOWN navigation key is released

NavKeyPressed Runs when any of the navigation cluster keys (including ENTER) is pressed. Use the EventKey
function within this handler to determine which key caused the event.

NavKeyReleased Runs when any of the navigation cluster keys (including ENTER) is released. Use the EventKey
function within this handler to determine which key caused the event.

NavLeftKeyPressed Runs when the LEFT navigation key is pressed

NavLeftKeyReleased Runs when the LEFT navigation key is released

NavRightKeyPressed Runs when the RIGHT navigation key is pressed

NavRightKeyReleased Runs when the RIGHT navigation key is released

NavUpKeyPressed Runs when the UP navigation key is pressed

NavUpKeyReleased Runs when the UP navigation key is released

NumericKeyPressed Runs when any key on the numeric keypad (including CLR or decimal point) is pressed. Use
the EventKey function within this handler to determine which key caused the event.

Table 6-1. 920i Event Handlers

86 920i Programming Reference

6.2 Compiler Error Messages

NumericKeyReleased Runs when any key on the numeric keypad (including CLR or decimal point) is released. Use
the EventKey function within this handler to determine which key caused the event.

NxKeyPressed Runs when a numeric key is pressed, where x=the key number 0–9

NxKeyReleased Runs when a numeric key is released, where x=the key number 0–9

PortxCharReceived Runs when a character is received on port x, where x is the port number, 1–32. Use the
EventChar function within these handlers to return a one-character string representing the
character that caused the event.

PrintFmtx Runs when a print format x (1–10) that includes the event raised (<EV>) token is printed.

PrintKeyPressed Runs when the PRINT key is pressed

PrintKeyReleased Runs when the PRINT key is released

ProgramStartup Runs when the indicator is powered-up or when exiting setup mode

SoftKeyPressed Runs when any softkey is pressed. Use the EventKey function within this handler to determine
which key caused the event.

SoftKeyReleased Runs when any softkey is released. Use the EventKey function within this handler to determine
which key caused the event.

SoftxKeyPressed Runs when softkey x is pressed, where x=the softkey number, 1–5, left to right

SoftxKeyReleased Runs when softkey x is released, where x=the softkey number, 1–5, left to right

SPxTrip Runs when setpoint x is tripped, where x is the setpoint number, 1–100)

TareKeyPressed Runs when the TARE key is pressed

TareKeyReleased Runs when the TARE key is released

TimerxTrip Runs when timer x is tripped, where x is the timer number, 1–32

UnitsKeyPressed Runs when the UNITS key is pressed

UnitsKeyReleased Runs when the UNITS key is released

UserxKeyPressed Runs when a user-defined softkey is pressed, where x is the user-defined key number, 1–10

UserxKeyReleased Runs when a user-defined softkey is released, where x is the user-defined key number, 1–10

UserEntry Runs when the ENTER key or Cancel softkey is pressed in response to a user prompt

ZeroKeyPressed Runs when the ZERO key is pressed

ZeroKeyReleased Runs when the ZERO key is released

Error Messages Cause (Statement Type)

Argument is not a handler name Enable/disable handler

Arguments must have intrinsic type Write/Writeln

Array bound must be greater than zero Type declaration

Array bound must be integer constant Type declaration

Array is too large Type declaration

Conditional expression must evaluate to a discrete data type If/while statement

Constant object cannot be stored Object declaration

Constant object must have initializer Object declaration

Exit outside all loops Exit statement

Expected array reference Subscript reference

Table 6-2. iRite Compiler Error Messages

Handler Description

Table 6-1. 920i Event Handlers (Continued)

920i Programming Reference - Appendix 87

Expected object or function reference Qualifying expression

Expression must be numeric For statement

Expression type does not match declaration Initializer

Function name overloads handler name Function declaration uses name reserved for handler

Handlers may not be called Procedure/function call

Identifier already declared in this scope All declarations

Illegal comparison Boolean expression

Index must be numeric Subscript reference

Invalid qualifier Qualifying expression

Loop index must be integer type For statement

Name is not a subprogram Procedure/function call

Name is not a valid handler name Handler declaration

Not a member of qualified type Qualifying expression

Only a function can return a value Procedure/handler declaration

Operand must be integer or enumeration type Function or procedure call

Operand must be integer type Logical expression

Operand type mismatch Expression

Parameter is not a valid l-value Procedure/function call

Parameter type mismatch Procedure/function call

Parameters cannot be declared constant Subprogram declaration

Port parameter must be integer type Write/Writeln

Procedure name overloads handler name Procedure declaration uses name reserved for handler

Procedure reference expected Subprogram invocation

Record fields cannot be declared constant Type declaration

Record fields cannot be declared stored Type declaration

Reference is not a valid assignment target Assignment statement

Return is only allowed in a subprogram Startup body

Return type mismatch Return statement

Step value must be constant For statement

Subprogram invocation is missing parameters Procedure/function call

Syntax error Any statement

Cannot find system files Internal error

Compiler error — Context stack error Internal error

Too many names declared in this context Any declaration

Operand must be numeric Numeric operators

Subprogram reference expected Procedure/function call

Type mismatch in assignment Assignment statement

Type reference expected User-defined type name

Undefined identifier Identifier not declared

VAR parameter type must match exactly Procedure/function call

Wrong number of array subscripts Subscript reference

Wrong number of parameters Procedure/function call

Error Messages Cause (Statement Type)

Table 6-2. iRite Compiler Error Messages

88 920i Programming Reference

6.3 iRev Database Operations
You can use iRev and the 920i Interchange ® database utility software (PN 72809) to edit, save, and restore
databases for the 920i. This section describes procedures for maintaining 920i databases using iRev, including:

• Upload: Copies the database from the 920i to iRev

• Download: Copies the database from iRev to the 920i

• Import: Copies the contents of a database file stored on the PC into iRev

• Export: Copies the contents of a database file opened in iRev to a file on the PC
• Clear All: Clears the contents of a database on the 920i.

Note
An existing 920i database must be cleared
before downloading a database of the same
name.

• Editing: Databases can be displayed and edited using the iRev Data Editor

6.3.1 Uploading
To upload a database from the indicator (for viewing, editing, or backup), do the following:

1. Make a serial connection between the PC and the 920i

2. Start iRev

3. Connect to the indicator by clicking on the Connect button on the right side of the top toolbar
4. Click the Database bar on the left side of the iRev window
5. Click the Data Editor icon.
6. Select the database you want to upload, then click the Upload button on top right of the toolbar.
7. A status message box will confirm that iRev is Uploading Data. When the upload is done, the message will

change to Upload Complete. Please export your data to a delimited file for backup. Click OK.
You can now view, edit, or export the contents of the 920i database. Note that changing the database in iRev alone
does not change the database stored in the 920i; you must then clear the existing 920i database and replace it by
downloading the edited database (see Section 6.3.5 on page 89).

6.3.2 Exporting
For display, printing, or backup, you can save a database opened in iRev to a text file by using the Export
function.

1. With an open database uploaded to or created in iRev, click Export on the top toolbar.
2. A dialog box is shown to select which separator (delimiter) should be used to separate the database

fields. For example, if you pick tab-delimiting for a customer database, it might look like the following:
ElliotRobert1234555-8686

If you select semi-colon delimiting instead, the same entry will appear as shown below:
Elliot;Robert;1234;555-8686.

3. After you select the delimiter, click Begin. You are prompted to choose where to store the text file. Save
it in the same folder as your other program files.

4. When complete, a message box confirms Export Successful. You can now use the exported file for viewing
or printing the database, or for later import to iRev for download to the 920i.

6.3.3 Importing
Import works the same way as export but brings a previously exported text file into iRev. The imported database
can then be downloaded to the 920i.

1. Start the iRev Data Editor and select the table you into which you want to import data.
2. Click Import on the top toolbar.
3. A dialog box is shown to select the file to import. Double click on the file you want to import.
4. The Data Import Wizard box is shown that displays the first couple of rows of data in your file. Notice that

the field names are shown as the first row. This is not something you want to import into your database

920i Programming Reference - Appendix 89

since the field names are not part of the data. Click the up arrow next to Start import at row: prompt to start
at row 2 (the real data).

5. Click Next and select the separator character you used when the file was exported (the default is
tab-delimited).

6. Click Next again, then click Finish to import the file. All of your data should now be displayed in iRev. If
you wish to downloaded the imported database to the 920i, follow the procedure described in
Section 6.3.5.

6.3.4 Clearing
The Clear All button on the top of the toolbar in the iRev Data Editor clears both the iRev screen and the entire 920i
database. You must clear an existing 920i database before downloading edited data, but this function must be
used with care to avoid losing data.

To clear a database:

1. Upload the database from the 920i (see Section 6.3.1).
2. Edit the database and fields, if necessary.
3. Use the Export function described in Section 6.3.2 to save a copy of the database.
4. Highlight all of the fields at once and copy them using either Ctrl-C or by choosing Edit-Copy from the

toolbar.
5. Click the Clear All button to clear both the 920i database and the iRev fields.
6. Upload the blank database from the 920i to ensure data integrity. The lock symbol on the iRev screen will

open, allowing a new database to be downloaded.
7. To replace the cleared database with edited data, move the cursor to the upper left-hand box and paste the

copied data back into the iRev database. (Press Ctrl-V or choose Edit-Paste from the toolbar.)
8. Click the Download button to send fresh, edited data back down to the indicator (see below).

6.3.5 Downloading
IMPORTANT: When you download data to the 920i, it does not overwrite data that is there. Downloaded data is
added to the database regardless of whether it is the same data. If you edit uploaded data in iRev and want to
replace the indicator database, you must first Clear All, upload the cleared (blank) database, and then download
the edited data. (See Section 6.3.4 above.)

1. Create or edit the data in the rows and columns you want entered in the database.
2. With the indicator connected, click the Download button at the top on the toolbar.
3. A status box shows the download progress (Downloading Row [number] of [total rows]). When complete, a

Download completed successfully message is shown. The database is now stored in the 920i.

6.4 Fieldbus User Program Interface
The fieldbus data APIs (see “Fieldbus Data” on page 63), two type definitions (BusImage, BusImageReal), and
the EventPort function are used to manage fieldbus data.

The function of BusCommandHandler is similar to other user-written event handlers. When present and enabled
with the EnableHandler(BusCommandHandler) call, the BusCommandHandler is activated every time a message
is received on a fieldbus. Keeping the BusCommandHandler execution short is important in order to not miss
data transfers on the fieldbus.

The normal operation of BusCommandHandler is expected to include the following system calls in the following
order:

• EventPort
• GetImage, or GetImageReal
• SetImage, or SetImageReal

with intervening code to perform the required user functions. The SetImage or SetImageReal call should be as
close to the end of the BusCommandHandler as possible.

The BusImage type is the data type passed in GetImage and SetImage (or, for real data, GetImageReal and
SetImageReal).

90 920i Programming Reference

GetImage(fieldbus_no : integer; var data : BusImage) : SysCode

This call returns an array of data as received from the fieldbus. As only the data elements received on the fieldbus
are changed in a GetImage call, the array should be initialized prior to the GetImage call. The fieldbus_no is
the number returned by an EventPort call from within the BusCommandHandler.

SetImage(fieldbus_no : integer; var data : BusImage) : SysCode

This call writes data to the fieldbus chip for access on the next cycle of the PLC. All data elements of the data
array should be properly set before calling SetImage. The fieldbus_no is the number returned by an
EventPort call from within the BusCommandHandler.

Example BusCommandHandler Code

--
-- Handler Name : BusCommandHandler
-- Created By : Rice Lake Weighing Systems
-- Last Modified on : 1/16/2003
--
-- Purpose : Example handler skeleton.
--
-- Side Effects :
--
handler BusCommandHandler;
--Declaration Section
busPort : integer;
data : BusImage;
i : integer;
result : SysCode;

begin
 -- Clear out the data array.
 for i := 1 to 32 loop
 data[i] := 0;
 end loop;

 -- Find out which port (which bus card) started this event.
 busPort := EventPort;

 -- Then read the received data.
 result := GetImage(busPort, data);

-- Test result as desired

-- Data interpretation and manipulation goes here.

 -- Finally, put the changed data back.
 result := SetImage(busPort, data);

-- Test result as desired

end;

6.5 Program to Retrieve 920i Hardware Configuration
The HARDWARE serial command (see Section 10 of the 920i Installation Manual, PN 67887) returns a list of
coded identifiers to describe which option cards are installed in a 920i system. The following program provides a
similar function by deciphering the coded values returned by the HARDWARE command and printing a list of
installed option cards.

The largest 920i system configuration (CPU board plus two six-card expansion boards) can support up to 14
option cards; the following program builds a 1 x 14 array by searching each slot for an installed option card then
printing a list of slots and installed cards.

920i Programming Reference - Appendix 91

program Hardware;

 my_array : HW_array_type;

handler User1KeyPressed;

 i : integer;
 next_slot : HW_type;
 begin
 Hardware(my_array);
 for i := 1 to 14
 loop
 if my_array[i] = NoCard then
 WriteLn(2,"Slot ",i," No Card");
 elsif my_array[i] = DualAtoD then
 WriteLn(2,"Slot ",i," DualAtoD");
 elsif my_array[i] = SingleAtoD then
 WriteLn(2,"Slot ",i," SinglAtoD");
 elsif my_array[i] = DualSerial then
 WriteLn(2,"Slot ",i," DualSerial");
 elsif my_array[i] = AnalogOut then
 WriteLn(2,"Slot ",i," AnalogOut");
 elsif my_array[i] = DigitalIO then
 WriteLn(2,"Slot ",i," DigitalIO");
 elsif my_array[i] = Pulse then
 WriteLn(2,"Slot ",i," Pulse");
 elsif my_array[i] = Memory then
 WriteLn(2,"Slot ",i," Memory");
 elsif my_array[i] = DeviceNet then
 WriteLn(2,"Slot ",i," DeviceNet");
 elsif my_array[i] = Profibus then
 WriteLn(2,"Slot ",i," Profibus");
 elsif my_array[i] = Ethernet then
 WriteLn(2,"Slot ",i," Ethernet");
 elsif my_array[i] = ABRIO then
 WriteLn(2,"Slot ",i," ABRIO");
 elsif my_array[i] = BCD then
 WriteLn(2,"Slot ",i," BCD");
 elsif my_array[i] = DSP2000 then
 WriteLn(2,"Slot ",i," DSP2000");
 elsif my_array[i] = AnalogInput then
 WriteLn(2,"Slot ",i," AnalogInput");
 elsif my_array[i] = ControlNet then
 WriteLn(2,"Slot ",i," ControlNet");
 elsif my_array[i] = DualAnalogOut then
 WriteLn(2,"Slot ",i," DualAnalogOut");
 end if;

 end loop;
 WriteLn(2,"");
 end;

end Hardware;

92 920i Programming Reference

6.6 920i User Graphics
iRite user programs can be used to display graphics. The entire 920i display is writeable; graphics can be of any
size, up to the full size of the 920i display, and up to 100 graphic images can be displayed. The actual number of
graphics that can be loaded depends on the size of the graphics and of the user program, both of which reside in
the user program space.

Graphics used in iRite programs can be from any source but must be saved as monochrome bitmap (.bmp) files
with write access (file cannot be read-only). To enable the file for use in an iRite program, it is converted to a user
program #include (.iri) file using the bmp2iri.exe program (see Figure 6-1).

prompt.bmp

bitmapped graphicDOS command window: run bmp2iri.exe

C:\bmp2iri prompt
C:\

bmp2iri.exe

g_Prompt : DisplayImage;

Procedure initPrompt;
begin
 g_Prompt [1] := 16;
 g_Prompt [1] := 16;
 g_Prompt [1] := 132153342;
 g_Prompt [1] := 2147368956;
 g_Prompt [1] := 536350704;
 g_Prompt [1] := 2147385342;
 g_Prompt [1] := 1073483760;
 g_Prompt [1] := 2122218558;
 g_Prompt [1] := 1010572920;
 g_Prompt [1] := 132121536;
 ...

bitmap.iri file

Figure 6-1. Example of Converting Bitmapped Graphic (prompt.bmp) to an .iri File

Figure 6-1 shows the conversion process for a graphic file, prompt.bmp, to a user program #include, bitmap.iri.
The conversion is done by running the bmp2iri.exe program in a DOS command window: note that the bmp2iri
program assumes the .bmp extension for the input graphic file (prompt.bmp). If additional files are converted
using bmp2iri.exe, the output of the program is appended to the bitmap.iri file.

To display the graphic, the bitmap.iri file must be incorporated into the user program by doing the following:

• In the iRite source (.src) file, immediately following the program declaration, add: #include
bitmap.iri

• In the startup handler, call the array initialization routine for each graphic.
• To display or erase a graphic, or to clear all graphics, call the DrawGraphic API with the appropriate

parameters (see page 67).

920i Programming Reference - Appendix 93

94 920i Programming Reference

API Index

Symbols
.Add 71
.Clear 71
.Delete 71
.FindFirst 71
.FindLast 71
.FindNext 72
.GetFirst 72
.GetNext 72
.GetPrev 72
.Sort 73
.Update 73
<DB>.FindPrev 72
<DB>.GetLast 72

A
A/D and calibration data APIs

GetFilteredCount 41
GetLCCD 41
GetLCCW 41
GetRawCount 42
GetWVAL 42
GetZeroCount 42
scale operations

GetFilteredCount 41
GetLCCD 41
GetLCCW 41
GetRawCount 42
GetWVAL 42
GetZeroCount 42

Abs 75, 76, 77
accumulator operations APIs

ClearAccum 35
GetAccum 35
GetAccumCount 35
GetAccumDate 36
GetAccumTime 36
GetAvgAccum 36
SetAccum 37

AcquireTare 33
analog output operations APIs

SetAlgout 65
APIs

<DB>.FindPrev 72
<DB>.GetLast 72
Abs 75, 76, 77
AcquireTare 33
analog output operations

SetAlgout 65
Asc 78
ATan 75, 76, 77
BitAnd 76
BitNot 76
BitOr 76
bit-wise operations

BitAnd 76

BitNot 76
BitOr 76
BitXor 76

BitXor 76
Ceil 75, 77
Chr$ 78
ClearAccum 35
ClearGraph 67
ClearPulseCount 65
ClearTare 33
CloseDataRecording 31
ClosePrompt 66
Cos 75, 77
CurrentScale 37
data conversion

IntegerToString 79
RealToString 79
StringToInteger 79
StringToReal 79

data recording
CloseDataRecording 31
GetDataRecordSize 31
InitDataRecording 32

database operations
<DB>.FindPrev 72
<DB>.GetLast 72

Date$ 42
digital I/O control

GetDigin 62
GetDigout 63
SetDigout 63

DisableHandler 42
DisableSP 52
display operations

ClosePrompt 66
DisplayStatus 66
GetEntry 66
GetKey 45
PromptUser 66
SelectScreen 66
SetEntry 67
WaitForEntry 49

display programming
DrawGraphic 67
SetBargraphLevel 69
SetLabelText 69
SetNumericValue 70
SetSymbolState 70
SetWidgetVisibility 70

DisplayStatus 66
DrawGraphic 67
EnableHandler 43
EnableSP 52
EventChar 43
EventKey 43
EventPort 43
EventString 43

920i Programming Reference - API Index 95

Exp 75, 77
fieldbus data

GetFBStatus 64
GetImage 63, 64
GetImageReal 64
SetImage 64
SetImageReal 65

GetAccum 35
GetAccumCount 35
GetAccumDate 36
GetAccumTime 36
GetAvgAccum 36
GetBatchingMode 53
GetBatchStatus 53
GetConsecNum 44
GetCountBy 44
GetCurrentSP 53
GetDataRecordSize 31
GetDate 44
GetDigin 62
GetDigout 63
GetEntry 66
GetFBStatus 64
GetFilteredCount 41
GetGrads 44
GetGross 31
GetImage 63, 64
GetImageReal 64
GetKey 45
GetLCCD 41
GetLCCW 41
GetMode 38
GetNet 32
GetRawCount 42
GetROC 34
GetSoftwareVersion 45
GetSPBand 54
GetSPCaptured 54
GetSPDuration 54
GetSPHyster 55
GetSPNSample 55
GetSPPreact 55
GetSPPreCount 56
GetSPTime 56
GetSPValue 56
GetSPVover 57
GetSPVunder 57
GetTare 32
GetTareType 33
GetTime 45
GetUID 45
GetUnits 38
GetUnitsString 37
GetWVAL 42
GetZeroCount 42
GraphCreate 67
graphing

ClearGraph 67
GraphCreate 67
GraphInit 68

GraphPlot 68
GraphScale 69

GraphInit 68
GraphPlot 68
GraphScale 69
Hex$ 78
InCOZ 38
InitDataRecording 32
InMotion 39
InRange 39
IntegerToString 79
LCase$ 78
Left$ 78
Len 78
LockKey 46
Log 75, 77
Log10 76, 77, 78
mathematical operations

Abs 75, 76, 77
ATan 75, 76, 77
Ceil 75, 77
Cos 75, 77
Exp 75, 77
Log 75, 77
Log10 76, 77, 78
Sign 76, 77, 78
Sin 76, 77, 78
Sqrt 76, 77, 78
Tan 76, 77

Mid$ 78
Oct$ 78
PauseBatch 57
Print 49
program scale

SubmitData 52
ProgramDelay 46
PromptUser 66
pulse input operations

ClearPulseCount 65
PulseCount 65
PulseRate 66

PulseCount 65
PulseRate 66
RealToString 79
ResetBatch 58
ResumeDisplay 47
Right$ 79
scale data acquisition

A/D and calibration data
GetFilteredCount 41
GetLCCD 41
GetLCCW 41
GetRawCount 42
GetWVAL 42
GetZeroCount 42

accumulator operations
ClearAccum 35
GetAccumCount 35
GetAccumDate 36
GetAccumTime 36

96 920i Programming Reference

GetAvgAccum 36
SetAccum 37

rate of change
GetROC 34

scale operations
CurrentScale 37
GetMode 38
GetUnits 38
GetUnitsString 37
InCOZ 38
InMotion 39
InRange 39
SelectScale 39
SetMode 40
SetUnits 40
ZeroScale 40

tare manipulation
AcquireTare 33
ClearTare 33
GetTareType 33
SetTare 34

weight acquisition
GetGross 31
GetNet 32
GetTare 32

SelectScale 39
SelectScreen 66
Send 50
SendChr 50
SendNull 50
serial I/O

Print 49
Send 50
SendChr 50
SendNull 50
SetPrintText 50
StartStreaming 50
StopStreaming 51
Write 51
WriteLn 51

SetAccum 37
SetAlgout 65
SetBargraphLevel 69
SetBatchingMode 58
SetConsecNum 47
SetDate 47
SetDigout 63
SetEntry 67
SetImage 64
SetImageReal 65
SetLabelText 69
SetMode 40
SetNumericValue 70
setpoints and batching

DisableSP 52
EnableSP 52
GetBatchingMode 53
GetBatchStatus 53
GetCurrentSP 53
GetSPBand 54

GetSPCaptured 54
GetSPDuration 54
GetSPHyster 55
GetSPNSample 55
GetSPPreact 55
GetSPPreCount 56
GetSPTime 56
GetSPValue 56
GetSPVover 57
GetSPVunder 57
PauseBatch 57
ResetBatch 58
SetBatchingMode 58
SetSPBand 58
SetSPCount 58
SetSPDuration 59
SetSPHyster 59
SetSPNSample 59
SetSPPreact 60
SetSPPreCount 60
SetSPTime 60
SetSPValue 61
SetSPVover 61
SetSPVunder 62
StartBatch 62
StopBatch 62

SetPrintText 50
SetSoftkeyText 47
SetSPBand 58
SetSPCount 58
SetSPDuration 59
SetSPHyster 59
SetSPNSample 59
SetSPPreact 60
SetSPPreCount 60
SetSPTime 60
SetSPValue 61
SetSPVover 61
SetSPVunder 62
SetSymbolState 70
SetSystemTime 47
SetTare 34
SetTime 48
SetTimerDigout 74
SetUID 48
SetUnits 40
SetWidgetVisibility 70
Sign 76, 77, 78
Sin 76, 77, 78
Space$ 79
Sqrt 76, 77, 78
StartBatch 62
StartStreaming 50
STick 48
StopBatch 62
StopStreaming 51
string operations

Asc 78
Chr$ 78
Hex$ 78

920i Programming Reference - API Index 97

LCase$ 78
Left$ 78
Len 78
Mid$ 78
Oct$ 78
Right$ 79
Space$ 79
UCase$ 79

StringToInteger 79
StringToReal 79
SubmitData 52
SuspendDisplay 48
system support

Date$ 42
DisableHandler 42
EnableHandler 43
EventChar 43
EventKey 43
EventPort 43
EventString 43
GetConsecNum 44
GetCountBy 44
GetDate 44
GetGrads 44
GetSoftwareVersion 45
GetTime 45
GetUID 45
LockKey 46
ProgramDelay 46
ResumeDisplay 47
SetConsecNum 47
SetDate 47
SetSoftkeyText 47
SetSystemTime 47
SetTime 48
SetUID 48
STick 48
SuspendDisplay 48
SystemTime 48
Time$ 48
UnlockKey 48
UnlockKeypad 49

SystemTime 48
Tan 76, 77
Time$ 48
timer controls

SetTimerDigout 74
UCase$ 79
UnlockKey 48
UnlockKeypad 49
WaitForEntry 49
Write 51
WriteLn 51
ZeroScale 40

Asc 78
ATan 75, 76, 77

B
BitAnd 76
BitNot 76

BitOr 76
bit-wise operations APIs

BitAnd 76
BitNot 76
BitOr 76
BitXor 76

BitXor 76

C
Ceil 75, 77
Chr$ 78
ClearAccum 35
ClearGraph 67
ClearPulseCount 65
ClearTare 33
CloseDataRecording 31
ClosePrompt 66
Cos 75, 77
CurrentScale 37

D
data conversion APIs

IntegerToString 79
RealToString 79
StringToInteger 79
StringToReal 79

data recording APIs
CloseDataRecording 31
GetDataRecordSize 31
InitDataRecording 32

database operations APIs
<DB>.FindPrev 72
<DB>.GetLast 72

Date$ 42
DecodeExtFloat 79
DecodeMessage 80
DecodeWeight 80
digital I/O control APIs

GetDigin 62
GetDigout 63
SetDigout 63

DisableHandler 42
DisableSP 52
display operations APIs

ClosePrompt 66
DisplayStatus 66
GetEntry 66
GetKey 45
PromptUser 66
SelectScreen 66
SetEntry 67
WaitForEntry 49

display programming APIs
DrawGraphic 67
SetBargraphLevel 69
SetLabelText 69
SetNumericValue 70
SetSymbolState 70
SetWidgetVisibility 70

DisplayStatus 66

98 920i Programming Reference

DrawGraphic 67

E
EnableHandler 43
EnableSP 52
EncodeExtFloat 79
EventChar 43
EventKey 43
EventPort 43
EventString 43
Exp 75, 77

F
fieldbus data APIs

GetFBStatus 64
GetImage 63, 64
GetImageReal 64
SetImage 64
SetImageReal 65

G
GetAccum 35
GetAccumCount 35
GetAccumDate 36
GetAccumTime 36
GetAvgAccum 36
GetBatchingMode 53
GetBatchiStatus 53
GetConsecNum 44
GetCountBy 44
GetCurrentSP 53
GetDataRecordSize 31
GetDate 44
GetDigin 62
GetDigout 63
GetEntry 66
GetFBStatus 64
GetFilteredCount 41
GetGrads 44
GetGross 31
GetImage 63, 64
GetImageReal 64
GetIqubeData 44
GetKey 45
GetLCCD 41
GetLCCW 41
GetMode 38
GetNet 32
GetRawCount 42
GetROC 34
GetSoftwareVersion 45
GetSPBand 54
GetSPCaptured 54
GetSPDuration 54
GetSPHyster 55
GetSPNSample 55
GetSPPreact 55
GetSPPreCount 56
GetSPTime 56

GetSPValue 56
GetSPVover 57
GetSPVunder 57
GetTare 32
GetTareType 33
GetTime 45
GetUID 45
GetUnits 38
GetUnitsString 37
GetWVAL 42
GetZeroCount 42
GraphCreate 67
graphing APIs

ClearGraph 67
GraphCreate 67
GraphInit 68
GraphPlot 68
GraphScale 69

GraphInit 68
GraphPlot 68
GraphScale 69

H
Hex$ 78
High Precision 79

I
InCOZ 38
InitDataRecording 32
InitHiPrec 80
InMotion 39
InRange 39
IntegerToString 79

L
LCase$ 78
Left$ 78
Len 78
LockKey 46
Log 75, 77
Log10 76, 77, 78

M
mathematical operations APIs

Abs 75, 76, 77
ATan 75, 76, 77
Ceil 75, 77
Cos 75, 77
Exp 75, 77
Log 75, 77
Log10 76, 77, 78
Sign 76, 77, 78
Sin 76, 77, 78
Sqrt 76, 77, 78
Tan 76, 77

Mid$ 78

O
Oct$ 78

920i Programming Reference - API Index 99

P
PauseBatch 57
Print 49
program scale APIs

SubmitData 52
ProgramDelay 46
PromptUser 66
pulse input operations APIs

ClearPulseCount 65
PulseCount 65
PulseRate 66

PulseCount 65
PulseRate 66

R
rate of change APIs

GetROC 34
RealToString 79
ResetBatch 58
ResetTimer 73
ResumeDisplay 47
ResumeTimer 73
Right$ 79

S
Scale Data Acquisition 31

Weight Acquisition 31
CloseDataRecording 31
GetDataRecordSize 31

scale data acquisition APIs
accumulator operations

ClearAccum 35
GetAccum 35
GetAccumCount 35
GetAccumDate 36
GetAccumTime 36
GetAvgAccum 36
SetAccum 37

rate of change
GetROC 34

scale operations
CurrentScale 37
GetMode 38
GetUnits 38
GetUnitsString 37
InCOZ 38
InMotion 39
InRange 39
SelectScale 39
SetMode 40
SetUnits 40
ZeroScale 40

tare manipulation
AcquireTare 33
ClearTare 33
GetTareType 33
SetTare 34

weight acquisition
GetGross 31
GetNet 32

GetTare 32
scale operations APIs

CurrentScale 37
GetMode 38
GetUnits 38
GetUnitsString 37
InCOZ 38
InMotion 39
InRange 39
SelectScale 39
SetMode 40
SetUnits 40
ZeroScale 40

SelectScale 39
SelectScreen 66
Send 50
SendChr 50
SendNull 50
serial I/O APIs

Print 49
Send 50
SendChr 50
SendNull 50
SetPrintText 50
StartStreaming 50
StopStreaming 51
Write 51
WriteLn 51

SetAccum 37
SetAlgout 65
SetBargraphLevel 69
SetBatchingMode 58
SetConsecNum 47
SetDate 47
SetDigout 63
SetEntry 67
SetImage 64
SetImageReal 65
SetLabelText 69
SetMode 40
SetNumericValue 70
setpoints and batching APIs

DisableSP 52
EnableSP 52
GetBatchingMode 53
GetBatchStatus 53
GetCurrentSP 53
GetSPBand 54
GetSPCaptured 54
GetSPDuration 54
GetSPHyster 55
GetSPNSample 55
GetSPPreact 55
GetSPPreCount 56
GetSPTime 56
GetSPValue 56
GetSPVover 57
GetSPVunder 57
PauseBatch 57
ResetBatch 58

100 920i Programming Reference

SetBatchingMode 58
SetSPBand 58
SetSPCount 58
SetSPDuration 59
SetSPHyster 59
SetSPNSample 59
SetSPPreact 60
SetSPPreCount 60
SetSPTime 60
SetSPValue 61
SetSPVover 61
SetSPVunder 62
StartBatch 62
StopBatch 62

SetPrintText 50
SetSoftkeyText 47
SetSPBand 58
SetSPCount 58
SetSPDuration 59
SetSPHyster 59
SetSPNSample 59
SetSPPreact 60
SetSPPreCount 60
SetSPTime 60
SetSPValue 61
SetSPVover 61
SetSPVunder 62
SetSymbolState 70
SetSystemTime 47
SetTare 34
SetTime 48
SetTimer 74
SetTimerDigout 74
SetTimerMode 74
SetUID 48
SetUnits 40
SetWidgetVisibility 70
Sign 76, 77, 78
Sin 76, 77, 78
Space$ 79
Sqrt 76, 77, 78
StartBatch 62
StartStreaming 50
StartTimer 75
STick 48
StopBatch 62
StopStreaming 51
StopTimer 75
string operations APIs

Asc 78
Chr$ 78
Hex$ 78
LCase$ 78
Left$ 78
Len 78
Mid$ 78
Oct$ 78
Right$ 79
Space$ 79
UCase$ 79

StringToInteger 79
StringToReal 79
SubmitData 52
SubmitDSPData 52
SubmitMessage 80, 81
SuspendDisplay 48
system support APIs

Date$ 42
DisableHandler 42
EnableHandler 43
EventChar 43
EventKey 43
EventPort 43
EventString 43
GetConsecNum 44
GetCountBy 44
GetDate 44
GetGrads 44
GetSoftwareVersion 45
GetTime 45
GetUID 45
LockKey 46
ProgramDelay 46
ResumeDisplay 47
SetConsecNum 47
SetDate 47
SetSoftkeyText 47
SetSystemTime 47
SetTime 48
SetUID 48
STick 48
SuspendDisplay 48
SystemTime 48
Time$ 48
UnlockKey 48
UnlockKeypad 49

SystemTime 48

T
Tan 76, 77
tare manipulation APIs

AcquireTare 33
ClearTare 33
GetTareType 33
SetTare 34

Time$ 48
timer control APIs

SetTimerDigout 74
Timer Controls 73

U
UCase$ 79
UnlockKey 48
UnlockKeypad 49

W
WaitForEntry 49
weight acquisition APIs

GetGross 31

920i Programming Reference - API Index 101

GetNet 32
GetTare 32

Write 51
WriteLn 51

Z
ZeroScale 40

102 920i Programming Reference

PN 67888 04/12

© 2012 Rice Lake Weighing Systems

	About This Manual
	1.0 Introduction
	1.1 What is iRite?
	1.2 Why iRite?
	1.3 About iRite Programs
	1.4 Running Your Program
	1.5 Sound Programming Practices
	1.6 Summary of Changes

	2.0 Tutorial
	2.1 Getting Started
	2.2 Program Example with Constants and Variables

	3.0 Language Syntax
	3.1 Lexical Elements
	3.1.1 Identifiers
	3.1.2 Keywords
	3.1.3 Constants
	3.1.4 Delimiters

	3.2 Program Structure
	3.3 Declarations
	3.3.1 Type Declarations
	3.3.2 Variable Declarations
	3.3.3 Subprogram Declarations

	3.4 Statements
	3.4.1 Assignment Statement
	3.4.2 Call Statement
	3.4.3 If Statement
	3.4.4 Loop Statement
	3.4.5 Return Statement
	3.4.6 Exit Statement

	4.0 Built-in Types
	5.0 API Reference
	5.1 Scale Data Acquisition
	5.1.1 Weight Acquisition
	5.1.2 Tare Manipulation
	5.1.3 Rate of Change
	5.1.4 Accumulator Operations
	5.1.5 Scale Operations
	5.1.6 A/D and Calibration Data

	5.2 System Support
	5.3 Serial I/O
	5.4 Program Scale
	5.5 Setpoints and Batching
	5.6 Digital I/O Control
	5.7 Fieldbus Data
	5.8 Analog Output Operations
	5.9 Pulse Input Operations
	5.10 Display Operations
	5.11 Display Programming
	5.12 Event Handlers
	5.13 Database Operations
	5.14 Timer Controls
	5.15 Mathematical Operations
	5.16 Bit-wise Operations
	5.17 Built-in Types
	5.18 String Operations
	5.19 Data Conversion
	5.20 High Precision
	5.21 USB

	6.0 Appendix
	6.1 Event Handlers
	6.2 Compiler Error Messages
	6.3 iRev Database Operations
	6.3.1 Uploading
	6.3.2 Exporting
	6.3.3 Importing
	6.3.4 Clearing
	6.3.5 Downloading

	6.4 Fieldbus User Program Interface
	6.5 Program to Retrieve 920i Hardware Configuration
	6.6 920i User Graphics

	API Index

