OPTIONS

[MATH FUNCTION]
[TOTALIZER]
[FLOW CORRECTION]
FOR AL/AH3000 SERIES
HYBRID RECORDER

NSTRUCTIONS

Retain this manual apart from the instrument and in an easily accessible.

Please make sure that this manual is handed to the final user of the instrument.

TABLE OF CONTENTS

Introduction 1

1. Separate manuals 1
2. 'Data communications input' by keys 1
[1] Math functions 1
3. Types of math functions 1
4. Programming 3
2.1 Printing channel for computed result 3
2.2 Printing range 3
2.3 Decimal place for display and printing 3
2.4 Computation of maximum, minimum and average values 3
5. Programming flow chart 4
3.1 Types of math function and their flow chart 4
3.2 Square root, logarithm, exponential, absolute value and data communications input 5
3.3 Arithmetic computation 1 6
3.4 Arithmetic computation 2 8
3.5 Computation of maximum, minimum and average values 10
3.6 Computation of temperature/humidity 12
[2] Totalizing 14
6. Math expression for totalizing computation 14
7. Programming 14
2.1 Resetting of totalizing computation 14
2.2 Overflow of totalized value 14
2.3 Operation at power failure recovery 15
2.4 Interval time 15
2.5 Starting time of totalizing computation 15
2.6 Printing range 15
2.7 Decimal place for display and printing 15
8. Programming flow chart 16
[3] Flow correction 18
9. Correction computation types and math expressions 18
1.1 Flow correction computation 1 (FloW1) 18
1.2 Flow correction computation 2 (FloW2) 18
1.3 Flow correction computation 3 (FloW3) 18
1.4 Flow correction computation 4 (FloW3) 19
1.5 Flow correction computation 5 (FloW5) 19
1.6 Flow correction computation 6 (FloW6) 19
1.7 Flow correction computation 7 (FloW7) 19
10. Programming 20
2.1 Printing range 20
2.2 Decimal place for display and printing 20
2.3 Abnormal data 20
11. Programming flow chart 22
[4] List printing 24
[Appendix] Conversion table for temperature/humidity computation 25

Introduction

This manual is only for the optional specifications of 'Math function', 'Totalizer' and 'Flow correction' of AL3000 and AH3000 series hybrid recorders. For the standard functions and other optional specifications, please refer the separate manuals.

1. Separate manuals

1) Standards

AL3000 series (Multi-point type)	INE-270 \square
AH3000 series (Multi-point type)	INE-271■
$\left.\begin{array}{l}\text { AL3000 series (Pen type) } \\ \text { AH3000 series (Pen type) }\end{array}\right\}$	INE-308 \square

2) Option

Communications interface …
[Note]- \square is the Revision No.

2. 'Data communications input' by keys

'Data communications input' can be programmed with keys when the 'Math function' (option) and 'Communications interface' (option) are combined. However, for the option of 'Communications interface', it is programmed through communications only.

[1] Math functions

The measured data of each channel can be computed and their results are displayed and printed.
The alarm setpoints in the channel Nos. for computed results are programmed for the computed values.

1. Types of math functions

TYPE	MATH EXPRESSION	SET VALUE * ${ }^{1}$
1. non (no computation)	-	-
2. mUL (Arithmetical computation 1)	$A x+B y+C x y+D$ A, B, C, D: Constant x, y : Measured values	- Channel No. for computed result - Constant (A, B, C, D) - Channel No. for measured values (x, y)
3. $\mathrm{diV}^{* 2}$ (Arithmetical computation 2)	$A x / y+B$ A, B: Constant x, y : Measured values	- Channel No. for computed result - Constant (A, B) - Channel No. for measured values (x, y).
4. LoGE (Natural Logarithm)	LOG $_{\mathrm{e}} \mathrm{x}$ x : Measured value	- Channel No. for measured value (x) - (= Channel No. for computed result)
5. LoG10 (Logarithm)	LOG $_{10} \mathrm{X}$ x : Measured value	- Channel No. for measured value (x) - (= Channel No. for computed result)
6. PoWEr (Exponential)	$\begin{aligned} & \mathrm{e}^{\mathrm{x}} \\ & \mathrm{x}: \text { Measured value } \end{aligned}$	- Channel No. for measured value (x) - (= Channel No. for computed result)

TYPE	MATH EXPRESSION	SET VALUE * ${ }^{1}$
$\begin{aligned} & \text { 7. root } *^{3} \\ & \text { (Square root) } \end{aligned}$	$\left(\mathrm{S}_{\mathrm{S}}-\mathrm{S}_{\mathrm{z}}\right) \sqrt{\frac{R_{X}-R_{\mathrm{Z}}}{\mathrm{R}_{\mathrm{S}}-R_{\mathrm{Z}}}}+\mathrm{S}_{\mathrm{Z}}$ $\left(\begin{array}{l}\mathrm{R}_{\mathrm{x}}: \text { Voltage value of measuring input } \\ \mathrm{R}_{\mathrm{s}}: \text { Maximum limit for range setting } \\ \mathrm{R}_{\mathrm{Z}}: \text { Minimum limit for range setting } \\ \mathrm{S}_{\mathrm{s}}: \text { Maximum limit for scale setting } \\ \mathrm{S}_{\mathrm{z}}: \text { Minimum limit for scale setting }\end{array}\right)$	- Channel No. for voltage value of measuring input $\left(\mathrm{R}_{\mathrm{x}}\right)$ (= Channel No. for computed result)
8. Humidity (Humidity)	Measured values of dry bulb (x) and wet bulb (y) and humidity is computed by the relative humidity table. x, y : Measured values	- Channel No. for computed result - Channel No. for measured values (x, y).
9. Hi PEAK (Maximam value)	Maximum value of measured values (x) during an interval	- Channel No. for computed result - Interval - Starting time - Channel No. for measured value (x)
10. Lo PEAk (Minimum value)	Minimum value of measured values (x) during an interval	
11. AVErAGE (Average value)	Average value of measured values (x) during an interval	
12. AbS *6 (Absolute value)	$\|x\|$ x : Measured value	- Channel No. for measured value (x) - (= Channel No. for computed result)
13. int ${ }^{4}$ (Totalizer)	This is only applicable for the "Totalizer" (option). Refer to Section [2] for details.	
14. Comm in *5 (Data communications input)	Nil [Only displayed for the "communications interface" (option)]	- Channel for data communications input
$15-21^{* 6}$ FLoW1 to FLoW7 (Flow correction 1 to 7)	This is only applicable for the "Flow correction" (option). Refer to Section [3] for details.	

*1 : Setting of printing rage is necessary for all math functions from 2 to 21.
*2 : When the measured value (y) is 0 , the value (Ax) becomes as bellow.
if $A x>0$ then OVER
if $A x=0$ then 0
if $\mathrm{Ax}<0$ then -OVER
*3 : The math expression shown in the right side is applied when the measuring input voltage (Rx) is 1% or more of the setting range ($\mathrm{Rs}-\mathrm{Rz}$). When it is less than 1%, it becomes and is fixed to the minimum value of scale setting (Sz).
*4: Refer to Section 2 item 14 for the 'Totalizer’ (option).
*5: When the 'Math-function' (option) and 'Communications Interface' (option) are combined, the data communications input can be set by keys.
*6 : Only pen type.

2. Programming

2.1 Printing channel for computed result

1) Math functions of which computed results are only printed in the channels Nos. of measured value

The computed result by the math functions of square root, natural logarithm, logarithm, absolute value, and exponential is only printed in the channel No. of measured value (x). Therefore the measured value (x), which these 5 math functions are applied to, cannot be printed.
2) Math functions of which computed results can be printed in any channels

The computed result by other math functions than the above 5 kinds can be printed in any channels including the channel of measured value. However, if the channel of measured value is selected, the measured value cannot be printed.

2.2 Printing range

The printing range of the channel for computed result is "Printing range" programmed by math function programming, not by range programming.

2.3 Decimal place for display and printing

The decimal place is decided by "Printing range" programmed by math function programming. If the decimal place differs in the maximum and minimum values, the fewer decimal places is effective.

2.4 Computation of maximum, minimum and average values

1) Resetting of computation

The computation is automatically reset after the programmed interval time. Accordingly maximum, minimum and average values in each interval time are computed.
2) Operation at power failure recovery

1. If the power is recovered in the programmed interval time, the computation continues.
2. If the power is not recovered in the programmed interval time, the computation is canceled and starts again from the recovery time.
3. The judgment of power failure is within 24 hours. If the power failure continues longer than 24 hours, the computation is canceled irrespective the recovery time and starts again from the recovery time.
3) Starting time of computation

The starting time is only valid for the first operation after its setting. The computation starts from the starting time.

3. Programming flow chart

3.1 Types of math function and their flow charts

The programming flow chart differs on the type of math function.

Type of math function	Item No. (Page)
MuL (Arithmetic computation 1)	3.3 (page 6)
diV (Arithmetic computation 2)	3.4 (page 8)
LoGE (Natural logarithm)	3.2 (page 5)
LoG10 (Logarithm)	3.2 (page 5)
PoWER (Exponential)	3.2 (page 5)
Root (Square root)	3.2 (page 5)
Humidity (Humidity)	3.6 (page 12)
Hi PEAk (Maximum value)	3.5 (page 10)
Lo PEAk (Minimum value)	3.5 (page 10)
AVErAGE (Average value)	3.5 (page 10)
AbS (Absolute value)	3.2 (page 5)
Comm in (Data communications port)	3.2 (page 5)

3.2 Square root, logarithm, exponential, absolute value and data communications input

(Ex.) To execute the square root computation for the measured value of Channel 2 and program the printing range to 0.0 to 100.0

Ref. $1>$	Checking of other channels
You can check the math function type of other channels.	
Press channels.	or
Ref. 2	Channel digit change
In AH3000 series multi-point type, a channel is programmed by two digits $(06 / 12 / 24)$.	

Ref. 3 Math functions

- This flow chart is applied to the following 3 math functions.
- When the communications interface is added, the data communications input can be set with keys.
LoGE : Natural logarithm
Log10 : Logarithm
PoWEr : Exponential
AbS .-.... Absolute value
Commin
Datà communications input

Ref. 4 Programming range of

 Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.
Ref. 5 Storing

Store "temporarily stored"
parameters by pressing SHIFT and $\underset{\substack{\text { SET } \\ \text { ENO } \\ \text { simultaneously. } \\ \hline}}{\text { sen }}$
If not, the parameters programmed earlier remain.

3.3 Arithmetic computation 1

(Ex.) $A x+B y+C x y+D$: To multiply the measured value ' x ' of Channel 2 by 2 and print its result on Channel 2 $A=2, B=C=D=0, x=$ Channel $2, y=$ not used, Printing range $=0.0$ to 100.0

Ref. 3 Math functions by \qquad
This flow chart is only applied to Arithmetic computation 1 (mUL).

Ref. 4 ' x ' and ' y ' channels
 1. Not-used channel
 If the measured value of ' x ' channel or ' y ' channel is not used, make sure to program any channel number to the channel not used as a dummy input. (No programming of the channel not used will become an error.) Then program the appropriate constants to ' 0 '.
 2. For the initial programming, both ' x ' and ' y ' channels are blank.

Ref. 5 Constants of A, B, C and D

1. Not-used constants

For the not-used constant, program it to ' 0 '.
2. Programming of constants
(1) 5 digits or less including a sign
(2) Down to three decimal places Ex. $\square \square . \square \square \square$

Ref. 6
Programming range of max. and min. values
Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.

Ref. 7 Storing
Store "temporarily stored" parameters by pressing \square SHFT and \square simultaneously. If not, the parameters programmed earlier remain.

3.4 Arithmetic computation 2

(Ex.) Ax / y + B: To divide the measured value ' x ' of Channel 2 by the measured value ' y ' of Channel 1 and print its result on Channel 2
$A=1.0, B=0, x=$ Channel $2, y=1$, Printing range $=0.0$ to 100.0

Ref. $1>$	Checking of other channels
You can check the math function	
type of other channels.	
Press$\mathbf{~}$ channels.	

Ref. 2 Channel digit

In AH3000 series multi-point type, a channel is programmed by two digits (06/12/24).

Ref. 3	Math functions by this flow chart.
This flow chart is only applied to	
Arithmetic computation 2 (diV).	

Ref. 4 ' x ' and ' y ' channels
For the initial programming, both ' x ' and ' y ' channels are blank.

Ref. 5 Constants of A and B
1. Not-used constants
For the not-used constant (B),
program it to ' 0 '.
2. Programming of constants
(1) 5 digits or less including a
sign
(2) Down to three decimal places
Ex. $\square \square . \square \square \square$

Ref. 6 Programming range of max. and min. values
Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.

Ref. 7 Storing
Store "temporarily stored" parametersby pressing SHHFT and $\substack{\begin{subarray}{c}{\text { SEE } \\ \text { ENO }} }} \\{\text { simultaneously. If not, the }} \\{\hline} \end{subarray}$ parameters programmed earlier remain.

3.5 Computation of maximum, minimum and average values

(Ex.: Maximum value) To print, on Channel 3, the maximum value in the measured value of Channel 2
$A($ Interval $)=30 \mathrm{~min} ., B($ Start time $)=08: 00 \mathrm{am}$, Printing range $=0.0$ to 100.0

Ref. $1>$	Checking of other channels
You can check the math function	
type of other channels.	
Press$\mathbf{7}$ P.	or
channels.	

Ref. 2 Channel digit

In AH3000 series multi-point type, a channel is programmed by two digits (06/12/24).

Ref. 3 Math functions by
This flow chart is applied to the following 3 math functions.

| Hi PEAk | : Maximum value |
| :--- | :--- | :--- |
| Lo PEAk | : Minimum value |
| AVErAGE | : Average value |

Ref. 4
For the initial programming, the
measuring channel is blank.

Ref. 5	Programming range of interval
$00: 01$ to 24:00	

Ref. 6
Programming range
of start time

Ref. 7
Programming range of max. and min. values
Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.

Ref. 8 Storing

Store "temporarily stored"
parameters by pressing SHIFT and
 parameters programmed earlier remain.

3.6 Computation of temperature/humidity

(Ex.) To print the humidity on Channel 2
Dry bulb $($ Temperature $)=$ Channel 1, Wet bulb $($ Temperature $)=$ Channel 2, Printing range $=0.0$ to 100.0

Ref. 4 Dry and wet bulb channels
For the initial programming, both dry bulb and wet bulb channels are blank.

Ref. 6
Programming range of Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.

Ref. 7 Storing

Store "temporarily stored"

parameters by pressing SHHF and | $\substack{\mathrm{SET} \\ \text { ENO }}$ |
| :---: | :---: | :---: |
| simultaneously. If not, the | parameters programmed earlier remain.

[2] Totalizing

The measured data of each channel can be totalized and their results are displayed and printed. The alarm setpoints in the channel Nos. for totalized results is programmed for the totalized values.

1. Math expression for totalizing computation

$$
I N T_{n}=I N T_{n-1}+\frac{\left(P V_{n}+P V_{n-1}\right) \times\left(T_{n}-T_{n-1}\right)}{2} \div \text { Tbase }
$$

2. Programming

2.1 Resetting of totalizing computation

1) Start and resetting of totalized value by remote contacts reset

When the optional remote contacts function is added, the totalizing computation can be started or the totalized value can be reset by the remote contacts signal.
When the totalizing computation starts by the remote contacts reset, the totalized value is reset with each programmed interval, after the start.
For multi-point type, the EX4 terminal in remote contacts terminals EX1 to EX4 is used for the resetting of totalizing computation. The list printing is only executed by using this terminal when the totalizing computation is not required. For details, refer to the separate standard manual.
2) Resetting of totalized value by the programmed intervals

The totalized value is automatically reset after the programmed interval time from the start of the totalizing computation, and then restarts.

2.2 Overflow of totalized value

The maximum totalized value is limited to the maximum value of the printing range. When this totalized value exceeds its limitation, the value is reset to 0 and then the totalizing computation continues.

2.3 Operation at power failure recovery

1. If the power is recovered in the programmed interval time, the totalizing computation continues.
2. If the power is not recovered in the programmed interval time, the totalizing computation is canceled * and starts again from the recovery time.
3. The judgment of power failure is within 24 hours. If the power failure continues longer than 24 hours, the totalizing computation is canceled irrespective the recovery time and starts again from the recovery time.

* The totalizing computation is canceled and reset.

2.4 Interval time

The programming range of the interval time is $00: 01$ to $24: 00$. If the interval time is not required (in case of resetting of the totalized value by the remote contacts reset), program it to 99:00.

2.5 Starting time of totalizing computation

The programming range of the starting time is $00: 00$ to $23: 59$. This starting time is only valid for the first operation after its setting. The totalizing computation starts from the starting time. If the starting time is not required (starting by the remote contacts signal), program it to 99:00.

2.6 Printing range

The printing range of the channel for totalized result is "Printing range" programmed by totalizing computation programming, not by range programming.

2.7 Decimal place for display and printing

The decimal place is decided by "Printing range" programmed by totalizing computation programming. If the decimal place differs in the maximum and minimum values, the fewer decimal places is effective.

3. Programming flow chart

(Ex.) To execute the totalizing computation for measured value of Channel 1 and print its result on Channel 2
Time unit $=\mathrm{min}$, Totalizing interval $=1$ hour, Start time $=08: 00 \mathrm{am}$
Printing range for totalized value $=0$ to1000

Ref. 1
Checking of other channels

You can check the math function type of other channels.
Press \square or 4 to change channels.

Ref. 2 Channel digit

In AH3000 series multi-point type, a channel is programmed by two digits (06/12/24).

Ref. $3>$
Math functions by
this flow chart.

Ref. $4>$
3 types of time unit (sec, min, and hour) for measured value, are available.
(Ex.) If $\mathrm{m}^{3} / \mathrm{min}$ is required, select min.

| Ref. 5 |
| :--- | | Programming range of |
| :--- |
| interval |

00:01 to 24:00
If the interval time is not required,

program it to 99:00. \quad\begin{tabular}{l}
Ref. 6 Programming

range of start time

\hline | $00: 00$ to $23: 59$ |
| :--- |
| If the starting time is not required, |
| program it to 99:00. |

\hline
\end{tabular}

[3] Flow correction

1.Correction computation types and math expressions

1.1 Flow correction computation 1 (FLoW1):

Volume correction of gas (ideal gas)

$$
A \cdot X \cdot(E+B) /(C \cdot(F+D))
$$

(Basic formula)

$$
Q_{n}=Q_{i} x \frac{T_{n}}{T_{i}} \times \frac{P_{i}}{P_{n}} \times \frac{Z_{n}}{Z_{i}}
$$

$Q_{n}:$ Corrected result $\quad Q_{i}:$ Volumetric flow rate at measurement condition of flow meter
T_{n} : Reference temperature $\quad \mathrm{T}_{\mathrm{i}}$: Temperature of measured fluid at measurement condition
P_{n} : Reference pressure $\quad P_{i}$: Pressure of measured fluid at measurement condition
Z_{n} : Compression coefficient of measured fluid at reference temperature $\left(T_{n}\right)$ and reference pressure $\left(P_{n}\right)$.
Z_{i} : Compression coefficient of measured fluid at measurement condition

1.2 Flow correction computation 2 (FloW2):

Volume correction of liquid (excluding petroleum)

$$
\begin{array}{ll}
X \cdot(1-A \cdot(E-B)) \cdot(1+C \cdot(F-D)) & \text { A, B, C, D: Constants } \\
& \text { E, F: Arbitrary channels } \\
& \text { X: Measuring channel }
\end{array}
$$

(Basic formula)

$$
Q_{n}=Q_{i} \cdot\left(1-\alpha \cdot\left(T_{i}-T_{n}\right) \cdot\left(1+\beta \cdot\left(P_{i}-P_{n}\right)\right.\right.
$$

Q_{n} : Corrected result
Q_{i} :Volumetric flow rate at measurement condition of flow meter
T_{n} : Reference temperature
P_{n} : Reference pressure
T_{i} :Temperature of measured fluid at measurement condition
P_{i} :Pressure of measured fluid at measurement condition
α : Cubic expansion coefficient of measured fluid
β : Compressibility of measured fluid.

1.3 Flow correction computation 3 (FloW3):

Volume correction of liquid (petroleum)

$$
\begin{array}{ll}
E \cdot \exp \left(A \cdot(F-B)+C \cdot(F-B)^{2}\right) & \text { A, B, C: Constants } \\
& \text { E, F: Arbitrary channels }
\end{array}
$$

(Basic formula)

$$
\begin{array}{r}
\mathrm{Q}_{\mathrm{n}}=\mathrm{Q}_{\mathrm{i}} \cdot \exp \left(-\alpha_{\mathrm{t}} \cdot \Delta \mathrm{t} \cdot\left(1.0+0.8 \alpha_{\mathrm{t}} \cdot \Delta \mathrm{t}\right)\right. \\
\quad \alpha_{\mathrm{t}}
\end{array}=\frac{\mathrm{KO}}{(\rho 15)^{2}} \times \frac{\mathrm{K} 1}{\rho 15} .
$$

$Q_{n} \quad$: Corrected result
Q_{i} : Volumetric flow rate at measurement condition of flow meter
$\rho 15$: Density $\left(15^{\circ} \mathrm{C}\right)\left[\mathrm{kg} / \mathrm{m}^{3}\right] \quad \alpha_{t}$: Thermal expansion coefficient at $15^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{C}^{-1}\right]$
$\mathrm{K} 0, \mathrm{~K} 1$: Constants $\Delta \mathrm{t}$: Temperature difference $\left[\mathrm{t}=\mathrm{T}_{1}-15\right]\left[{ }^{\circ} \mathrm{C}\right]$

1.4 Flow correction computation 4 (FloW3):

Square root computation of flow correction 1

$$
\begin{array}{ll}
& \text { A, B, C, D: Constants } \\
\sqrt{A \cdot X \cdot(E+B) / C \cdot(F+D)} & \text { E, F: Arbitrary channels } \\
& \text { X: Measuring channel }
\end{array}
$$

1.5 Flow correction computation 5 (FloW5):

Temperature/pressure correction of differential pressure type flow meter (ideal gas)

$$
A \cdot X \cdot \sqrt{(B \cdot E+C) /(D \cdot F+273.15)}
$$

A, B, C, D: Constants
E, F: Arbitrary channels
X : Measuring channel
(Basic formula)

$$
Q_{d}=Q_{f} \cdot \sqrt{\frac{P_{f}}{P_{d}}} \cdot \sqrt{\frac{T_{d}}{T_{f}}}
$$

$Q_{d}:$	Corrected result
$P_{d}:$ Reference pressure	$\mathrm{Q}_{f}:$ Flow rate at measurement condition.
$\mathrm{T}_{\mathrm{d}}:$ Reference temperature	

P_{f} : Pressure of measured fluid at measurement condition
T_{f} : Temperature of measured fluid at measurement condition
1.6 Flow correction computation 6 (FloW6):

Temperature correction of differential pressure type flow meter (ideal gas)

$$
\begin{array}{ll}
(A \cdot E+B / \sqrt{C \cdot F+D} & \text { A, B, C, D: Constants } \\
& \text { E, F: Arbitrary channels }
\end{array}
$$

1.7 Flow correction computation 7 (FloW7):
 Pressure correction of differential pressure type flow meter (ideal gas)

$$
\begin{array}{ll}
(A \cdot E+B) \cdot \sqrt{C \cdot F+D} & \text { A, B, C, D: Constants } \\
& \text { E, F: Arbitrary channels }
\end{array}
$$

2. Programming

2.1 Printing range

The printing range of the channel for flow correction computed result is "Printing range" programmed by flow correction computation programming, not by range programming.

2.2 Decimal place for display and printing

The decimal place is decided by "Printing range" programmed by flow correction computation programming. If the decimal place differs in the maximum and minimum values, the fewer decimal places is effective.

2.3 Abnormal data

1. When the data of each channel is abnormal (over-range, under-range, bumout, without range programming) or a denominator becomes zero (0), the flow correction computed result is treated as under-range.
2. The flow rate input before correction is computed with the limitation at 0 .

3. Programming flow chart

(Ex.) Flow correction 1: $\mathrm{A} \cdot \mathrm{X} \cdot(\mathrm{E}+\mathrm{B}) /(\mathrm{C} \cdot(\mathrm{F}+\mathrm{D}))$
$A=D=273.15, B=0, C=1, E=$ Channel 3 (pressure input)
$F=$ Channel 4 (temperature input), $X=$ Channel 2 (flow input), Printing range $=0.0$ to 100.0

Ref. 1 l $\begin{aligned} & \text { Checking of } \\ & \text { other channels }\end{aligned}$	
You can check the math function type of other channels.	
Press channels.	to change

Ref. 2 Channel digit

In AH3000 series multi-point type, a channel is programmed by two digits (06/12/24).

Ref. 3 Constants of A, B, C and D

1. Not-used constants

For the not-used constant (B), program it to ' 0 '.
2. Programming of constants
(1) 5 digits or less including a sign
(2) Down to three decimal places

Ex. $\square \square . \square \square \square$
3. For FloW3, the constant D is not existed.

Programming range o max. and min. values
Program the values within 5 digits including a sign. The remaining digits on the right side should be kept blank. For the initial programming, all digits are blank.

Ref. 5 Storing

Store "temporarily stored"

parameters by pressing SHIFT and | SET |
| :---: | :---: | :---: |
| ENO |
| Pimultaneously. If not, the | parameters programmed earlier remain.

[4] List printing

If the channels that math computation, totalizing computation or flow correction computation is programmed exist, a list of these computations is printed after the scale printing (including engineering unit and tag).
[Example of list print]

[Remark 1]

The above example is for AL3000.
For AH3000, Arithmetic computation 1, Arithmetic computation 2, Maximum value computation, Minimum value computation, Average value computation and Totalizing computation are printed in a single line.

[Remark 2]

Parameters E and F
E is for x channel and F is for y channel.
For the totalizing computation, E is for a measuring channel and F is for a time unit.

[Remark3]

The printing format for FLoW2 to FLoW7 is same as FLoW1.
For FLoW3, the constant D is not printed because it does not exsist.

$\stackrel{m}{\sim}$$\sim$$\sim$$\sim$	
	村
σ ∞ －	片
$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\begin{array}{\|l\|l\|} \hline 10 \\ 0 \\ 0 \\ \hline 1 \end{array}$	下ス
	パN下
	セ冂N
n 0 0 0	
¢	
	へ
\bigcirc	
$\stackrel{\circ}{\circ}$	
$\stackrel{7}{\circ}$	இう人
N	
\bigcirc	
4／3	

[^0]
CHINO

CHINO CORPORATION

32-8, KUMANO-CHO, ITABASHI-KU, TOKYO 173-8632
Telephone: 81-3-3956-2171
Facsimile: 81-3-3956-0915

[^0]: $\Delta \theta$ ：Temperature difference between dry bulb and wet bulb $\quad \theta \omega$ ：Temperature of wet bulb $\left({ }^{\circ} \mathrm{C}\right)$

