Description The 3500/46M Hydro Monitor is a four-channel instrument that accepts input from proximity, seismic, dynamic pressure and air gap sensors. The monitor conditions the signal to provide vibration, position and both static and dynamic pressure measurements. It then compares the conditioned signals with user-programmable alarms. Hydro Radial Vibration channels combine the shaft gap movement with the NX amplitude to provide a measurement to alarm on shear-pin failure. Using the 3500 Rack Configuration Software, you can configure the 3500/46M Hydro Monitor to perform the following functions: - Hydro Radial Vibration - Hydro Air Gap - Hydro Velocity - Hydro Acceleration - Hydro Thrust - Multimode Hydro RV - Multimode Air Gap - Multimode Hydro Velocity - Multimode Thrust - Multimode Acceleration - Multimode Hydro Dynamic Pressure - Hydro Stator End Winding (SEW) The monitor channels are programmed in pairs. Each channel may have separate or identical configurations. The primary purpose of the 3500/46M Hydro Monitor is to provide the following: - Machinery protection by continuously comparing monitored parameters against configured alarm setpoints to drive alarms - Essential machine information for operations and maintenance personnel Hydro Velocity channels provide early warning of pending machinery problems and assist in diagnosing them. Due to the nature of high amplitude, low frequency velocity events, the Hydro Velocity channel type cannot be used for automated machinery protection. Each channel, depending on configuration, typically conditions its input signal to generate various parameters called **static values**. You can configure **alert setpoints** for each active static value and **danger setpoints** for any two of the active static values. You can configure multimode channels to have up to eight sets of alarm parameters including alert and danger set points and alarm time delays. Each set may be configured for a specific machine mode. As the machine changes modes, the monitor can switch to a specific set using contacts on multimode I/O modules or software commands through a communications gateway. # **Specifications** ## Inputs | Signal | Accepts 1 to 4 proximity, air gap, velocity or acceleration sensor signals | |------------------------------------|--| | Power consumption | 7.7 watts, typical | | Multimode
positive input
I/O | 50 kΩ | | Input Impedance | | | |---|--|--| | Prox/Velom
I/O and
Multimode
Prox/Velom
I/O | 10 kΩ for Prox/Accel
3.5 MΩ for Velomitor | | ## Sensitivity | Hydro Radial
Vibration
and
Multimode
Hydro RV | 0.79 mV/µm (20 mV/mil),
3.94 mV/µm (100 mV/mil) or
7.87 mV/µm (200 mV/mil) | |---|---| | Hydro Air
Gap and
Multimode
Air Gap | 0.20 mV/µm (5 mV/mil),
0.22 mV/µm (5.6 mV/mil),
0.49 mV/µm (12.5 mV/mil) or
0.55 mV/µm (14 mV/mil) | | Hydro
Velocity and
Multimode
Hydro
Velocity | 20 mV/mm/s (508 mV/in/s) | | Hydro
Thrust and
Multimode
Thrust | 3.94 mV/µm (100 mV/mil),
7.87 mV/µm (200 mV/mil) or
11.22 mV/µm (285 mV/mil) | | Hydro
Acceleration
and
Multimode
Acceleration | 1.02 mV/m/s2 (10 mV/g) or
2.55 mV/m/s2 (25 mV/g) | | Hydro SEW | 10.19 mV/m/s2 (100 mV/g) | |-----------|----------------------------| | Multimode | Refer to the Bently Nevada | | Hydro | 350300 Dynamic Pressure | | Dynamic | Sensor datasheet, document | | Pressure | 110M4613 | ## Outputs | Front Panel LEDs | | |------------------|---| | OK LED | Indicates when the 3500/46M Hydro
Monitoris operating properly | | TX/RX
LED | Indicates when the 3500/46M Hydro
Monitor is communicating with
other modules in the 3500 Rack. | | Bypass
LED | Indicates when the 3500/46M Hydro
Monitor is in Bypass Mode. | | Buffered
Transducer
Outputs | The front of each monitor has one coaxial connector for each channel. | | |-----------------------------------|---|--| | | Each connector is short-circuit protected. | | | Output
Impedance | 550 Ω | | | Transducer Power Supply | | | | Prox/Velom | -23 Vdc nominal at 43 mA max | | | I/O and
Multimode
Prox/Velom
I/O | -23 vac nominar at 45 ma max | |---|------------------------------| | Multimode
Positive
Input I/O | +23 Vdc nominal at 23 mA max | | Recorder | +4 to +20 mA. Output is proportional to monitor full-scale. | |----------|---| | | One output is provided for each channel. | | | Monitor operation is unaffected by short circuits on recorder outputs. | |--|--| | Voltage
Compliance
(current
output) | 0 to +12 Vdc range across load
Load resistance is 0 to 600 Ω. | | Resolution | 0.3662 µA per bit
±0.25% error at room
temperature | | | ±0.7% error over temperature range | | | Update rate 100 ms or less | ## **Signal Conditioning** Specified at +25 °C (+77 °F) unless otherwise noted. # Hydro and Multimode Hydro Radial Vibration | Frequency Response | | |----------------------------|--| | Direct filter | 0.104 Hz to 500 Hz | | | Rotor speed is 25 to 1,500 cpm. | | Gap filter | -3 dB at 0.05 Hz | | Not 1X filter | 0.25 to 128 times rotor speed
Constant Q notch filter
Minimum rejection in
stopband of -50 dB | | 1X and NX
vector filter | Constant Q Filter
Minimum rejection in
stopband of -50 dB | | | The N value in NX is selectable between 2 and 20 (for machine speeds of 25 cpm to 1,500cpm) or 2 to 50 (for machine speeds of 25 cpm to 600 cpm). 1X and NX vector, Not 1X and composite parameters are valid for machine speeds per selected NX value range. | | Composite | NX amplitude multiplied by the percent change in gap from its zero position Specific for detecting Shear Pin failure | |-------------------|--| | Accuracy | | | Direct and
Gap | Within ±0.33% of full-scale
typical
±1% maximum | | 1X and NX | Within ±0.33% of full-scale
typical
±1% 1X maximum
±3% NX maximum | | Not IX | ±1% of full-scale typical
±3% maximum | | Composite | ±1% of full-scale typical | ### Hydro Air Gap and Multimode Air Gap | Instantaneous
Air Gap | Provides instantaneous gap
measurements when the
pole-passing rate slows to
less than one pole/second | |----------------------------|--| | Average Air
Gap | The monitor measures each pole gap and averages the values for all poles together over one revolution. | | Minimum Air
Gap | The minimum pole gap value in a revolution | | Maximum Air
Gap | The maximum pole gap value in a revolution | | Min Air Gap
Pole Number | The pole number detected with the minimum gap value in a revolution | | Max Air Gap
Pole Number | The pole number detected with the maximum gap value in a revolution | | | All values except
instantaneous Air Gap are
valid when the poles passing
rate is between 1 and 200
poles/second. | | Accuracy | | |--------------------|---| | Average Air
Gap | Within ±0.33% of full scale typical ±1% maximum | | Minimum Air
Gap | Within ±0.33% of full scale typical ±1% maximum | | Maximum Air
Gap | Within ±0.33% of full scale
typical
±1% maximum | # Hydro Velocity and Multimode Hydro Velocity | Frequency Response | | | |----------------------------|--|--| | Bias | Low-pass filter | | | | Low Mode: -3dB at 0.02 Hz
High Mode: -3dB at 0.07 Hz | | | Direct | Low Mode: 0.1875 to 343.75 Hz,
-3dB
High Mode: 0. 75 to 1375 Hz, -
3dB | | | 1X and 2X
vector filter | Constant Q Filter
Minimum rejection in
stopband of –51 dB | | | | Low Mode: Valid for machine
speeds of 60 to 6,000 cpm
High Mode: Valid for machine
speeds of 60 to 24,600 cpm | | | Filter Quality | | | | High-pass | 4-pole (80 dB per decade, 24 dB per octave) | | | Low-pass | 2-pole (40 dB per decade,
12dB per octave) | | | Accuracy | | | | Direct | Within ±1% of full-scale
typical
±2% maximum
Exclusive of filters | | | 1X Amplitude | Within ±1% of full-scale
typical
±2% maximum
Exclusive of filters | |--------------|--| | 2X Amplitude | Within ±1% of full-scale
typical
±2% maximum
Exclusive of filters | ### **Hydro Thrust and Multimode Thrust** | Frequency Response | | |--------------------|---| | Direct filter | -3dB at 1.2 Hz | | Gap filter | -3dB at 0.41 Hz | | Accuracy | | | Direct | Within ±0.33% of full-scale
typical
±1% maximum | # Hydro Acceleration and Multimode Acceleration | Frequency Response | | |----------------------------|--| | Bias filter | Low-pass filter
-3dB at 0.01 Hz | | Not OK filter | Low-pass filter
-3dB at 2400 Hz | | 1X and 2X
vector filter | Constant Q Filter Minimum rejection in stopband of –51 dB Valid for machine speeds of 60 cpm to 60,000 cpm | | | See Frequency Ranges - Multimode Acceleration Channel on the next page. | | Filter Quality | | | High pass | 4-pole (80 dB per decade,
24dB per octave) | | Low pass | 4-pole (80 dB per decade,
24dB per octave) | | Direct | Within ±0.33% of full scale
typical
±1% maximum
Exclusive of filters | |--------------|---| | 1X Amplitude | Within ±0.33% of full scale
typical
±1% maximum
Exclusive of filters | | 2X Amplitude | Within ±0.33% of full scale
typical
±1% maximum
Exclusive of filters | ### Hydro Stator End Winding (SEW) | Frequency Response | | | |------------------------|--|--| | Direct | 5.0 Hz to 800 Hz (-3dB corners) | | | Bias voltage | DC to 0.05 Hz (-3dB) | | | Pole Pass
Amplitude | 2x line frequency (100 Hz or
120 Hz)
Constant Q filter (Q=20)
Minimum rejection in stop
band of -60 dB | | | Direct
Resultant | 5.0 Hz to 800 Hz (-3dB corners) Resultant of both X and Y axis inputs | | | Pole Pass
Resultant | 2x line frequency (100 Hz or
120 Hz)
Constant Q filter (Q=20)
Minimum rejection in stop
band of -60 dB
Resultant of both X and Y
axis inputs | | | Accuracy | | | | Direct | ±1% of Full Scale maximum | | | Bias voltage | ±1% of Full Scale maximum | | | Pole Pass | ±2% of full-scale typical | | ±3% maximum **Amplitude** | Direct | ±1% of full-scale typical | |-----------|---------------------------| | Resultant | ±2% maximum | | Pole Pass | ±2% of full-scale typical | | Resultant | ±3% maximum | ### Multimode Hydro Dynamic Pressure | Frequency Response | | | |-------------------------|---|--| | Low mode | 0.1875 Hz to 343.7500 Hz | | | High mode | 0.75 Hz to 1375.00 Hz | | | Filter Quality | | | | High pass | 4-pole
(80 dB per decade,
24 dB per octave) | | | Low pass | 4-pole
(80 dB per decade,
24 dB per octave) | | | Accuracy | | | | Peak Direct
amplitud | ±1% of Full Scale
maximum | | | RMS Direct
amplitude | ±2% of Full Scale
maximum | | | Static Pressure | ±0.87% of Full Scale
maximum | | ### Frequency Ranges - Multimode Acceleration Channel The following table lists the frequency ranges for the monitor under different options using the Multimode Acceleration Channel type: | Output Type | Non-Integrated
(Hz) | Integrated
(Hz) | |-------------|------------------------|--------------------| | RMS | 10 to 30,000 | 10 to 20,000 | | Peak | 3 to 30,000 | 3 to 20,000 | ## **Physical** | Monitor Module (Main Board) | | | |---|---|--| | Dimensions
(Height x Width x
Depth) | 241.3 mm x 24.4 mm x
241.8 mm
(9.50 in x 0.96 in x 9.52 in) | | | Weight | 0.91 kg (2.0 lb) | | | I/O Modules | | | | Dimensions
(Height x Width x
Depth) | 241.3 mm x 24.4 mm x 99.1
mm
(9.50 in x 0.96 in x 3.90 in) | | | Weight | 0.20 kg (0.44 lb) | | ## **Rack Space Requirements** | Monitor
Module | 1 full-height front slot | |-------------------|--------------------------| | I/O Modules | 1 full-height rear slot | ### **Alarms** | Alarm
setpoints | Use Rack Configuration Software to set alert levels for each value measured by the monitor and danger setpoints for any two of the values measured by the monitor. Alarms are adjustable from 0 to 100% of full-scale for each measured value except when the full-scale range exceeds the range of the transducer. In this case, the range of the transducer will limit the setpoint. | | |---------------------------|---|--| | Alarm
accuracy | Within 0.13% of the desired value | | | Hydro Radial
Vibration | Direct
Gap
Not 1X Amplitude
1X Amplitude | | | | NX Amplitude
Composite
IX Phase Lag
NX Phase Lag | |--|---| | Multimode
Hydro RV | Direct Gap Not 1X Amplitude 1X Amplitude NX Amplitude Composite 1X Phase Lag | | Hydro Air Gap
and Multimode
Air Gap | Average Air Gap
Minimum Air Gap | | Hydro Velocity
and Multimode
Hydro Velocity | Direct 1X Amplitude 2X Amplitude 1X Phase Lag 2X Phase Lag | | Hydro Thrust
and Multimode
Thrust | Direct
Gap | | Hydro
Acceleration
and Multimode
Acceleration | Direct 1X Amplitude 2X Amplitude 1X Phase Lag 2X Phase Lag | | Hydro Stator
End Winding
(SEW) | Direct Pole Pass Amplitude Direct Resultant Pole Pass Resultant | | Multimode
Hydro
Dynamic
Pressure | Direct
Static Pressure
1X Amplitude
2X Amplitude
1X Phase Lag
2X Phase Lag | ### **Alarm Time Delays** You can program alarm delays using **Rack Configuration Software.** | Alert From 1 to 400 seconds in one | |------------------------------------| |------------------------------------| | | second intervals | | |-----------------------|---|--| | Danger | From 1 to 400 seconds in one second intervals | | | Multimode
channels | You can set delays for each measured value that has alarm set points. | | | Standard
channels | You can set one alert and danger delay for the channel. | | # 3500/46M Hydro Monitor Measured Variables Measured variables are used to monitor the machine. The 3500/46M provides the following measured variables: | Hydro Radial
Vibration | Direct Gap 1X Amplitude 1X Phase Lag NX Amplitude NX Phase Lag Not 1X Amplitude Composite Amplitude | |---------------------------|--| | Multimode
Hydro RV | Direct Gap IX Amplitude IX Phase Lag NX Amplitude Not IX Amplitude Composite Amplitude Mode | | Hydro Air Gap | Average Air Gap Instantaneous Air Gap Minimum Air Gap Maximum Air Gap Minimum Air Gap Pole Number Maximum Air Gap Pole Number | | Multimode Air
Gap | Average Air Gap Instantaneous Air Gap Minimum Air Gap Maximum Air Gap Minimum Air Gap Pole Number Maximum Air Gap Pole Number Mode | | Hydro Velocity | Direct Bias IX Amplitude IX Phase Lag 2X Amplitude 2X Phase Lag | | Multimode | Direct | | Hydro Velocity | Bias
1X Amplitude
1X Phase Lag
2X Amplitude
2X Phase Lag
Mode | |---|---| | Hydro Thrust | Direct
Gap | | Multimode
Thrust | Direct
Gap
Mode | | Hydro
Acceleration | Direct Bias IX Amplitude IX Phase Lag 2X Amplitude 2X Phase Lag | | Multimode
Acceleration | Direct Bias IX Amplitude IX Phase Lag 2X Amplitude 2X Phase Lag Mode | | Hydro Stator
End Winding
(SEW) | Direct Bias Voltage Pole Pass Amplitude Direct Resultant Pole Pass Resultant | | Multimode
Hydro
Dynamic
Pressure | Direct Static Pressure IX Amplitude IX Phase Lag 2X Amplitude 2X Phase Lag Mode | # Compliance and Certifications #### **FCC** This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: - This device may not cause harmful interference. - This device must accept any interference received, including interference that may cause undesired operation. #### **EMC** **European Community Directive:** EMC Directive 2014/30/EU Standards: EN 61000-6-2 Immunity for Industrial Environments EN 61000-6-4 Emissions for Industrial Environments ### **Electrical Safety** **European Community Directive:** LV Directive 2014/35/EU Standards: EN 61010-1 #### **RoHS** **European Community Directive:** RoHS Directive 2011/65/EU #### **Maritime** ABS - Marine and Offshore Applications DNV GL Rules for Classification – Ships, Offshore Units, and High Speed and Light Craft ### **Hazardous Area Approvals** For the detailed listing of country and product specific approvals, refer to the *Approvals Quick Reference Guide* (108M1756) available from Bently.com. ### CSA/NRTL/C Class I, Zone 2: AEx/Ex nA nC ic IIC T4 Gc; Class I, Zone 2: AEx/Ex ec nC ic IIC T4 Gc; Class I, Division 2, Groups A, B, C, and D; T4 @ Ta = -20° C to $+65^{\circ}$ C (-4° F to $+149^{\circ}$ F) When installed per drawing 149243 or 149244. ### ATEX/IECEX Ex nA nC ic IIC T4 Gc Ex ec nC ic IIC T4/T5 Gc T4 @ Ta= -20° C to $+65^{\circ}$ C $(-4^{\circ}$ F to $+149^{\circ}$ F) When installed per drawing 149243 or 149244. # **Ordering Considerations** The 3500/46M Hydro Monitor requires the following or later revisions of these firmware and software products: | Application | 3500/46M
Firmware
Version | 3500/01
Software
Version | 3500/02
Software
Version | 3500/03
Software
Version | |----------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------| | Hydro Radial Vibration | 2.02 | 2.70 | 2.21 | 1.22 | | Hydro Air Gap | 2.09 | 3.40 | 2.30 | 1.30 | | Hydro Velocity | 2.10 | 3.70 | 2.50 | 1.50 | | Hydro Acceleration | 2.40 | 4.40 | | | | Hydro Thrust | 2.40 | 4.40 | | | | Multimode Hydro RV | 2.40 | 3.80 | 2.51 | 1.51 | | Multimode Air Gap | 2.40 | 3.80 | 2.51 | 1.51 | | Multimode Hydro Velocity | 2.40 | 3.80 | 2.51 | 1.51 | | Multimode Thrust | 2.40 | 3.80 | 2.51 | 1.51 | | Multimode Acceleration | 2.40 | 3.80 | 2.51 | 1.51 | | Hydro Stator End Winding (SEW) | 4.10 | 3.93 | 2.52 | 1.52 | | Multimode Hydro Dynamic Pressure | 4.21 | 5.20 | | | | Application | 3500/46M
Hardware | 3500/22
Firmware | 3500/92
Firmware | System
1 | |--|-------------------------------------|---------------------|---------------------|-------------| | Multimode applications using hardware contacts to change monitor modes | Revision S Multimode
I/O Modules | | | | | Multimode applications using software commands to change monitor modes | | 1.32 | 1.16 | | | Multimode applications incorporating the 3500/94 display | | 1.60 | 2.30 | | | Applications requiring full multimode support from System 1 software | | 1.32 | | 6.0 | ### Other Requirements and Restrictions A multimode recorder ET block must be used with an external termination multimode I/O module. To connect these components, you must use a signal cable, part number 129525. The ET block provides recorder outputs and mode inputs. External Termination Blocks cannot be used with Internal Termination I/O Modules. When ordering I/O modules with External Terminations, the External Termination Blocks and cables must be ordered separately. ## **Ordering Information** 02 For the detailed listing of country and product specific approvals, refer to the *Approvals Quick Reference Guide* (108M1756) available from Bently.com. ### Hydro Monitor 3500/46 - AA-BB | A: I/O Module Type | | | |--------------------|--|--| | 01 | Prox/Velom I/O Module with Internal
Terminations | | | 02 | Prox/Velom I/O Module with External Terminations | | | 03 | Multimode Prox/Velom I/O Module with Internal Terminations | | | 04 | Multimode Prox/Velom I/O Module with External Terminations | | | 05 | Multimode Positive Input I/O Module with Internal Terminations | | | 06 | Multimode Positive Input I/O Module with External Terminations | | | B: Ho | zardous Area Approval Option | | | 00 | None | | | 01 | CSA/NRTL/C (Class 1, Division 2) | | | | | | ### **External Termination Blocks** ATEX/IECEx/CSA (Class 1, Zone 2) | 125808-08 | Prox/Velom External
Termination Block
Euro Style connectors | |-----------|---| | 125808-11 | Multimode Prox/Velom
External Termination Block
Euro Style connectors | | 125808-12 | Multimode Positive Input
External Termination Block
Euro Style connectors | | 125808-13 | Multimode Recorder Output
and Mode Input External
Termination Block
Euro Style connectors | |-----------|--| | 128702-01 | Recorder External
Termination Block
Euro Style connectors | | 128015-08 | Prox/Velom External
Termination Block
Terminal Strip Connectors | | 128015-11 | Multimode Prox/Velom
External Termination Block
Terminal Strip connectors | | 128015-12 | Multimode Positive Input
External Termination Block
Terminal Strip connectors | | 128015-13 | Multimode Recorder Output
and Mode Input External
Termination Block
Terminal Strip connectors | | 128710-01 | Recorder External ET Block
Terminal Strip connectors | #### **Cables** 3500 Transducer (XDCR) to External Termination (ET) Block Cable 129525 - AAAA-BB | A: I/O Cable Length | | | |---------------------|--------------------------|--| | 0005 | 5 feet (1.5 metres) | | | 0007 | 7 feet (2.1 metres) | | | 0010 | 10 feet (3.0 metres) | | | 0025 | 25 feet (7.6 metres) | | | 0050 | 50 feet (15.2 metres) | | | 0100 | 100 feet (30.5 metres) | | | B: Assem | B: Assembly Instructions | | | 01 | Not Assembled | | | 02 | Assembled | | | | | | ### 3500 Recorder Output to External Termination (ET) Block Cable (Non-Multimode) 129529 - AAAA-BB | A: I/O Cable Length | | | | | |--------------------------|------------------------|--|--|--| | 0005 | 5 feet (1.5 metres) | | | | | 0007 | 7 feet (2.1 metres) | | | | | 0010 | 10 feet (3.0 metres) | | | | | 0025 | 25 feet (7.6 metres) | | | | | 0050 | 50 feet (15.2 metres) | | | | | 0100 | 100 feet (30.5 metres) | | | | | B: Assembly Instructions | | | | | | 01 | Not Assembled | | | | | 02 | Assembled | | | | | S | p | a | r | e | S | |---|---|---|---|---|---| | | | | | | | | 176449-06 | 3500/46M Hydro Monitor | |-----------|--| | 144403-01 | 3500/46M Hydro Monitor User
Guide | | 140471-01 | Prox/Velom I/O Module with Internal Terminations | | 140482-01 | Prox/Velom I/O Module with
External Terminations | | 169459-01 | Multimode Prox/Velom I/O
Module with Internal
Terminations | | 169459-02 | Multimode Prox/Velom I/O
Module with External
Terminations | | 169715-01 | Multimode Positive Input I/O
Module with Internal
Terminations | | 169715-02 | Multimode Positive Input I/O
Module with External | | | Terminations | |----------|---| | 00561941 | Prox/Velom and Multimode
Prox/Velom I/O Module ten-pin
connector shunt | | 00580434 | Euro Style connector header
8 pin
For use on I/O modules with
internal terminations | | 00580432 | Euro Style connector header
10 pin
For use on I/O modules with
internal terminations | ## **Graphs and Figures** - 1. Status LEDs - 2. Buffered Transducer Outputs - 3. Prox/Velom I/O Module with Internal Terminations - 4. Prox/Velom I/O Module with External Terminations - 5. Multimode Prox/Velom I/O Module with Internal Terminations - 6. Multimode Prox/Velom I/O Module with External Terminations - 7. Multimode Positive Input I/O Module with Internal Terminations - 8. Multimode Positive Input I/O Module with External Terminations Figure 1: Front and Rear Views of the 3500/46M Hydro Monitor Copyright 2020 Baker Hughes Company. All rights reserved. Bently Nevada and Orbit Logo are registered trademarks of Bently Nevada, a Baker Hughes Business, in the United States and other countries. The Baker Hughes logo is a trademark of Baker Hughes Company. All other product and company names are trademarks of their respective holders. Use of the trademarks does not imply any affiliation with or endorsement by the respective holders. Baker Hughes provides this information on an "as is" basis for general information purposes. Baker Hughes does not make any representation as to the accuracy or completeness of the information and makes no warranties of any kind, specific, implied or oral, to the fullest extent permissible by law, including those of merchantability and fitness for a particular purpose or use. Baker Hughes hereby disclaims any and all liability for any direct, indirect, consequential or special damages, claims for lost profits, or third party claims arising from the use of the information, whether a claim is asserted in contract, tort, or otherwise. Baker Hughes reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Baker Hughes representative for the most current information. The information contained in this document is the property of Baker Hughes and its affiliates; and is subject to change without prior notice. It is being supplied as a service to our customers and may not be altered or its content repackaged without the express written consent of Baker Hughes. This product or associated products may be covered by one or more patents. See Bently.com/legal. 1631 Bently Parkway South, Minden, Nevada USA 89423 Phone: 1.775.782.3611 or 1.800.227.5514 (US only) Bently.com