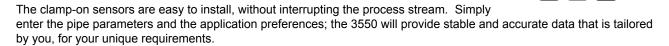
Signet 3350/3550 Ultrasonic Flowmeter


3-3350.090 Rev. A 11/05 English

1. Description

The Signet 3350/3550 Ultrasonic Flowmeter uses transit-time technology to deliver accurate flow rate and totalizer information with no direct fluid contact.

Originally used for temporary installations and periodic flow rate validation, today these ruggedized instruments are perfectly suited to applications where pipes cannot be penetrated, or where the fluid medium is hazardous or easily contaminated.

123 456

+GF+

Caution: High Voltage Turn off power before of

The Ultrasonic Flowmeter is programmable via the front panel keypad. Select display menu instructions in English, French, Spanish, German or Japanese on a 2-line, backlit LCD.

Contents	Page
Description	Front cover
Specifications	2
Features and Functions	3
Installation and Quick Start Guide	4
Pipe Parameters	8
Factory settings	12
Parameter Protection	14
Measure setup mode	15
Configuring the Display	17
Set the 4-20 mA Range (FLOW SPAN-1)	17
Set Dual 4-20 mA Ranges (FLOW SPAN-2)	18
Set Pulse Output and Totalizer functions	19
Start, Stop and Reset the Totalizer	20
Set Relay Outputs (DO1 and DO2)	21
Adjust the 4-20 mA Span	22
Calibrate the 4-20 mA Output	23
Set Serial Communication parameters	25
TROUBLESHOOTING AND MAINTENANCE	27
Piping data: Acoustic Velocity in Solids	33
Acoustic Velocity of Water (Listed at varying temperatures)	33
Acoustic Velocity in Fluids	34
Pipe Dimensions: PVC	41
Pipe Dimensions: Steel	43
Pipe Dimensions: Welded Steel, Aluminum, and Copper	44
Pipe Dimensions: Galvanized Steel Tubing and Pipe	45
Pipe Dimensions: Iron	47
Ordering Information	Back Cover

Specifications

General

Flow rate range: 0.3 to 10 m/s (1 to 33 ft/s) Low flow cut off : 0 to 5 m/s configurable

Suitable pipe materials:

Plastic (PVC, PVDF, CPVC, PP, PE, PEEK, etc.)
 Metals (carbon steel, SS, copper, aluminum, iron)

Pipe Size Range
• Plastic pipes:

3550-100: DN25 to DN100 (1 in. to 4 in.)
 3550-200: DN50 to DN225 (2 in. to 9 in.)

Metal pipes:

3550-100: DN50 to DN100 (2 in. to 4 in.)
 3550-200: DN50 to DN225 (2 in. to 9 in.)

Application: Clean liquids, no aeration or particles

Accuracy

Pipe size	Over 2 m/s (6 ft/s)	Under 2 m/s (6 ft/s)
DN25 to DN40 (1 to 1½ in.)	±3% of rate	±0.06 m/s
DN50 to DN225 (2 to 9 in.)	±2% of rate	±0.04 m/s

Display: LCD w/back light 2x16 characters

Sensor signal quality LED - Normal: green, Error: red

User selectable language:

English, French, German, Spanish, Japanese

Display resolution:

Flow rate: 00.0000 min to 9999999 max
 Totalizer: 00000.00 min to 99999999 max

Totalizer Error condition:

Hold last good value or Continue Count

Error Time delay 0 to 100 s

Damping: 0 to 100s Averaging function for 4 to 20 mA

output and Flow Rate display

Response time: 200 ms

Material

Flowmeter: ABS Sensors: PBT Sensor frame: 304 SS

Electrical

3-3350-1: 100-120 VAC ±10%, 50/60Hz, 15VA max
 3-3350-2: 200-240 VAC ±10%, 50/60Hz, 15VA max
 Signal cable: RF coaxial cable, 5 m std (Avail to 30 m)

Output Specifications

4 to 20 mA output

Max. load resistance: 600Ω

4 to 20 mA Error condition (Burnout): User selectable

Hold last good value
 Over-scale (22.6 mA)

Under-scale (3.8 mA)
 Zero (4 mA)

Bi-directional or Autoscale dual ranges

User Selectable

Hysteresis: 0 to 10% of flow rate range

Flow range applicable to digital output

Output Specifications (continued)

Relay output (DO2)

Capacity: 220V AC /30V DC, 1A (resistive load)
 Mechanical SPDT relay contact: (replaceable)

Mechanical life expectancy: > 2 x 10⁷ operations

Relay Pulse width: User selectable 50, 100 or 200 ms

Open collector output (DO1)

Capacity: 30V DC, 0.1A

Total pulse: Programmable, 1 pps to 1 pulse per day

· Open Collector Pulse width:

User selectable 5, 10, 50, 100 or 200 ms

Digital output Logic

ACTIVE ON: Relay DO2 Normally OFF (de-energized)

Open Collector DO1 normally open

ACTIVE OFF: Relay DO2 Normally ON (de-energized)
Open Collector DO1 normally closed

Programmable functions

· Cutoff limit (common to DO1 and DO2)

NOT USED

TOTAL SWITCH Operation

+TOTAL PULSE: Proportional to +Flow rate

-TOTAL PULSE: Proportional to -Flow rate

FLOW SPAN-2:

Select a contact output at SPAN-2 measurement status (forward automatic 2 ranges, forward/reverse automatic 2 ranges).

ALARM Operation

- HARDWARE: Contact output at EEPROM error.

- PROCESS: Contact output when signal is bad

FLOW SWITCH Operation

UPPER SWITCH: HIGH Flow Alarm
LOWER SWITCH: LOW Flow Alarm
TOTAL SWITCH: Volumetric Pulse

Flow requirements

Well-developed turbulent or laminar flow

· Maximum air in liquid volume:

0.2% @ 1 m/s (inversely proportional to velocity)

Weight

• Flowmeter: 0.8 kg

Sensor: 3-3550-100: 0.3 kg
 3-3550-200: 0.4 kg

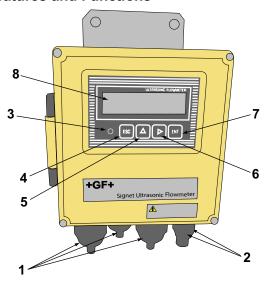
Environmental

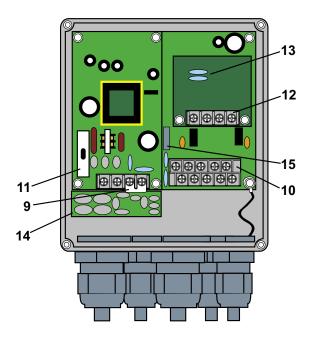
NEMA4/IP65 enclosure for both flowmeter and flow sensor Process temperature:

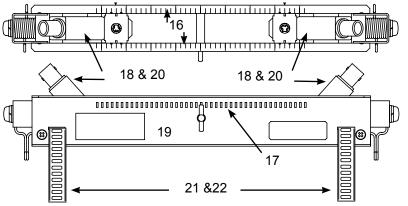
· With silicone rubber acoustic couplant

-40°C to +180°C (-40°F to 356°F)

 With silicone-free grease acoustic couplant 0°C to 60°C (32°F to 140°F)


Ambient temperature:


3-3350-X: -20° to 50°C (-4° to 122°F)


• 3-3550-XXX: -20° to 60°C (-4° to 140°F)

Short-term thermal stability: 140°C, 30 min Relative Humidity: 90% (non-condensing)

Features and Functions

No.	Name
INO.	ivame

1. Cable ports, PG 13.5

2. Cable ports, PG 9

3. Flow signal LED

4. Escape key

5. UP key

6. Shift key

7. Enter key

8. Liquid Crystal Display

9. Power terminals

10. Input/Output Cables

11. Fuse and Fuse holder

12. Communication board terminals

13. Communication board

14. Arrester board

15. Relay

16. Scale

17. Locking hole

18. Transmit and Receive Signal Cables

19. Sensor Frame

20. Sensors

21. Mounting straps for Frame

22. Spring tightener

Description

For power cable, Output Cable

For signal cables only

Green = Normal operation, Red = Error condition

Moves back one menu level or cancels changes not yet ENTERED

Selects items, scrolls active numeric values and symbols

Advances blinking cursor, selects decimal position

ENTERS (saves to memory) new settings and selections

Displays flow rate and menu information

Connect AC or DC power

Sensor coaxial cables, Relay output and 4-20 mA output cables

250 V, 0.5 A for AC models, or 250 V, 1 A for DC models Wiring for optional Comm board for serial data output RS-232 (3-3350.403) or RS-485 (3-3350.404) Optional

Optional arc supressors for relay outputs

DO2 Dry Contact, 1 A 220 VAC or 30 VDC resistive load Used to measure proper spacing for TX-RX sensors

Sensors lock in place at these openings

BLACK = Downstream, RED = Upstream

Mounting apparatus for Sensor units

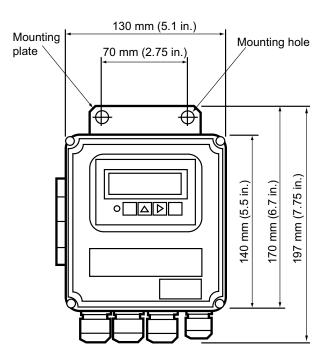
Ultrasonic TX-RX sensors

Stainless steel belts (3-3550.393)

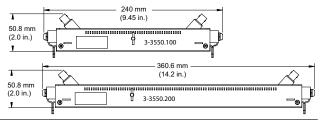
Removes slack from steel mounting straps after mounting

Installation and Quick Start Guide

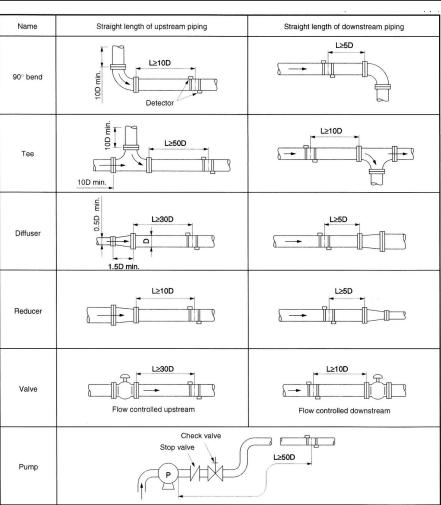
The installation and startup of this flowmeter is divided into seven steps. They are organized in the sequence they should be completed:

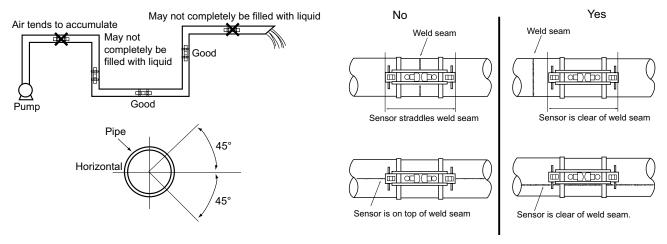

- Select a mounting location and method for the 3350 electronics.
- Select a location and mount the 3550 strap-on sensor assembly onto the pipe.
- Connect the sensor cables and 24 VDC power to the electronics terminals.
- 4. Navigate to the MEASURE SETUP menu and enter the information for your pipe and fluid.
- Position the two ultrasonic transducers at the spacing indicated by the PIPE PARAMETER and secure them in the frame.
- Review the system troubleshooting information and the initial values of the output parameters in this manual to determine if it is safe to start the flowmater.
- 7. Program the 3350 flowmeter electronics to reflect the remaining application requirements.

Select a mounting location and method for the 3350 electronics.


The electronics may be mounted on a wall or on a pipe stand.

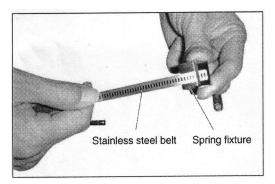
- For wall mounting, use two M8 bolts. Drill holes based on the dimensions illustrated here.
- For pipe mounting, use the two U-bolts supplied with the unit.

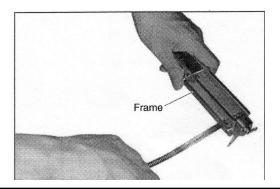

2A. Select a location for the 3550 strap-on sensor assembly.


The length of upstream and downstream straight pipe of the ultrasonic detector should be long enough to ensure accurate measurements.

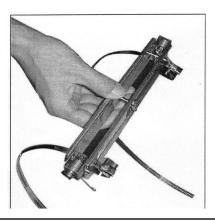
The sensor can be installed at any position around the pipe when attention is given to the following requirements:

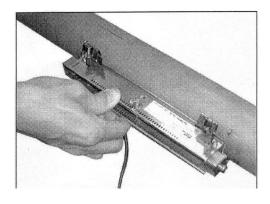
- The pipe must be completely filled with fluid.
- IOn horizontal pipes, mount the sensors at ±45° from the horizontal plane to avoid air pockets and debris that may accumulate at the top and bottom of the pipe.
- The pipe surface must be free of pits and distortions. Use thinner, sandpaper, etc., to remove and surface corrosive, rust, etc, and to remove any rust, pitch, or other materials from the pipe surface.
- Do not mount the sensors on a section of pipe that is visibly outof-round, or straddling a flange or weld seam.

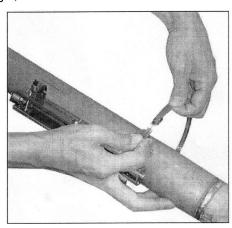


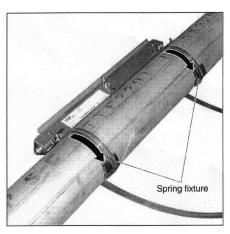

CAUTION

Handle the steel mounting belts carefully to avoid injury.


1. Slide the spring fixture onto the stainless steel belt.

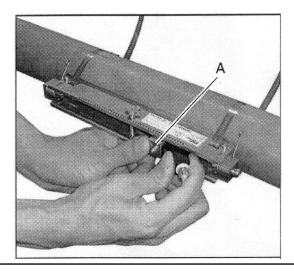

2. Pass the stainless steel belt through 2 belt holes on the frame.


3. Place the frame on a pipe smooth, clean section subjected to a surface treatment.


Temporarily tighten the first stainless steel belt on the pipe.

 Adjust the frame so it is parallel with the pipe, put the spring fixture to the side of the frame and tighten the stainless steel belt so that the frame will tightly be fitted. Mounting on pipe whose diameter is DN150 (6 in.) or larger, connect 2 stainless steel belts.

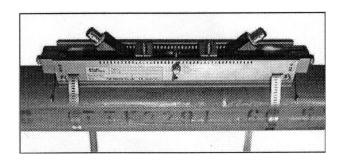
 After tightening both stainless steel belts, slide the spring fixture to the opposite to the frame.
 Note: Frame must be relocated, use new stainless steel belts.

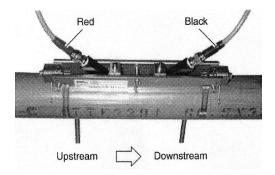

2b. Mount the 3550 strap-on sensor assembly onto the pipe (continued)

Before mounting the sensor unit into the frame, Apply silicone (or silicone-free grease) over the transmission surface of the sensor unit. Do not leave any bubbles.

When using silicon-free grease, do not exceed the fluid temperature range:

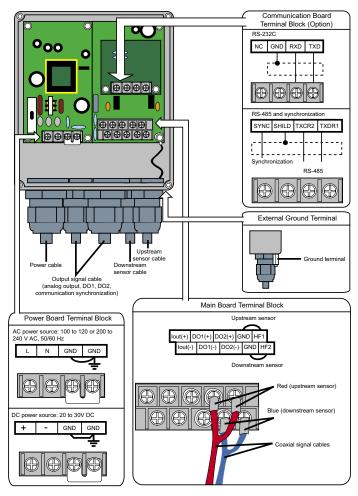
Silicon rubber: 20 to 100°C
Silicon-free grease: 0 to 60°C


Silicon-free grease should be reapplied approximately once every 6 months. (Silicon rubber need not be reapplied.)



Insert the sensor unit into the frame. The UPSTREAM and DOWNSTREAM sensors must be spaced according to the PIPE PARAMETER results. Do not lock the sensors yet. They will need to be adjusted in step 5.

Mount both sensor units so as to be roughly symmetrical with respect to the frame.


Connect the signal line with BNC connectors to the sensor units. Engage the red BNC connector upstream, and the black BNC connector downstream.

Wiring 3.

Connect the power source and the two sensor cables as shown here.

- 1.All screws are M3 on the terminal block. Use crimp-style terminals for M3 whose outer diameter is
- 1.All screws are no on the terminal block. Ose chimp-styre terminals of mo whose outer analysis. 5.8 mm (% in,) or smaller.

 2. Connect the power board ground terminal block or the external ground terminal to earth ground. 3. Use only cables supplied with sensors

4. PIPE PARAMETERS

Display language

Before proceeding to the next step, the 3350 can be set to display the menus in several languages. The procedure to change from the ENGLISH selection is provided here.

The languages available are listed in the order in which they appear in the menu.

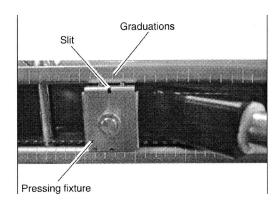
- English
- Japanese
- German
- French
- Spanish

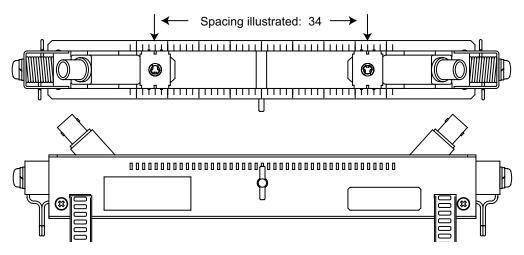
Press: Display shows: x 4 "MAINTENANCE MODE". "CURRENT CALIBRATION". х7 "LANGUAGE". 2nd line begins blinking. Scroll to the language required. New selection is stored. keys to resume measurement mode.

4. PIPE PARAMETER (continued)

The PIPE PARAMETER section of the Measure Setup menu calculates the correct spacing between the two Ultrasonic electrodes. This must be done before the installation can be completed. The following pages will guide the user through each step.

If the parameter protection is set at "PROTECTION ON", change it to "PROTECTION OFF". The ID NO. must be entered if it is active.


Press:	Display shows:
	1st line: "MEASURE SETUP"
ENT	1st line: "SYSTEM UNIT"
	1st line: PIPE PARAMETER"
ENT	1st line: "OUTER DIAMETER". 2nd line: "60.00 mm"
ENT	Cursor blinks on 2nd line.
and D	Input the outer diameter. (Pipe data is located in section 3.2.)
ENT	"COMPLETE" is indicated for about 1 second on 2nd line.
	1st line: "PIPE MATERIAL". 2nd line: "PVC" (As currently selected)
ENT	Cursor blinks on 2nd line.
	Select the pipe material from menus. If the pipe material is not listed, select "PIPE SV" and
	input the sound velocity of the pipe material at the end of its, See piping data in section 3.2.
ENT	"COMPLETE" is indicated for about 1 second on 2nd line.
	1st line: "WALL THICKNESS". 2nd line: "4.50mm" * (or as currently selected)
ENT	Cursor blinks on 2nd line.
\triangle and \triangleright	Input the wall thickness of a measurement pipe. See piping data in section 3.2.
ENT	"COMPLETE" is indicated for about 1 second on 2nd line.


4. PIPE PARAMETER (continued)

Press:	Display shows:
	1st line: "LINING MATERIAL". 2nd line: "NO LINING"
ENT	Cursor blinks on 2nd line.
	Select the lining material. If the material is not listed, select "Lining S.V." and input the sound velocity of the lining material. Sound Velocity data is located in section 6.6.
ENT \triangle	"COMPLETE" is indicated for about 1 second on 2nd line.
ENT	1st line: "LINING THICKNESS". 2nd line: "2.00 mm". (Not present if "No Lining" is selected)
	Cursor blinks on 2nd line.
and P	Input the lining thickness.
ENT	"COMPLETE" is indicated for about 1 second on 2nd line.
	1st line: "KIND OF FLUID". 2nd line: "WATER".
ENT	Cursor blinks on 2nd line.
	Select "WATER" or "SEA WATER". If the fluid is not listed, input the sound velocity of fluid.
	Sound Velocity (acoustic velocity) data is located at the back of this manual.
ENT	"COMPLETE" is indicated about 1 second on 2nd line.
	1st line: "KINEMATIC VISCO". 2nd line: "1.0038E-6m2/s". Kinematic viscosity of water or Sea
	Water is factory set. If fluid to be measured is other than water, input the kinematic viscosity
	referring to piping data at the back of this manual.
ENT	Cursor blinks on 2nd line.
and (D)	Input the kinematic viscosity.
ENT	"COMPLETE" is indicated about 1 second on 2nd line.
	First line: "SENSOR MOUNTING" Second line: "V" (Do not change this setting. The "Z" option is not available for this system)
	1st line: "SENSOR TYPE". 2nd line: "3-3350-100".
ENT	Cursor blinks on 2nd line.
	Select "3-3350-100" or "3-3350-200".
ENT	"**COMPLETE**" is indicated about 1 second on 2nd line.
ESC	1st line: "PIPE PARAMETER". 2nd line: "S= 16 (48mm)" Use this value to secure the two sensors at the correct spacing.
ESC	1st line: "MEASURE SETUP"
<u>△</u> 2x.	Measurement mode is resumed.

5. Position the two ultrasonic sensors at the spacing indicated by the PIPE PARAMETER and secure them in the frame.

Closeup of the center mark on the sensor and the spacing scale on the frame.

6. System Troubleshooting

If everything has been completed according to the instructions, the system is ready to begin working.

All of the remaining settings and menus enable the output functions to be tailored to suit a specific application. Review the next two pages and identify the functions that must be modified for the application.

About 10 seconds after connecting the signal line, the red LED on the flow transmitter should turn green, indicating the received signal is normal.

If the LED remains red, the Flowmeter is not receiving a good signal from the 3350 sensor.

The problem is most probably caused by the sensor installation.

Check these conditions:

Sensor spacing: Are the sensors the correct distance apart?

Sensor orientation: Are both sensors facing outward from each end of the frame?

Lock mechanism: Are both lock mechanisms securely latched into the frame?

Lubricant: Have the two sensors been coated liberally with silicone grease or a similar filler?

Parameter settings: Is the information in the PARAMETER SETTINGS menu correct?

Full pipe: Is the pipe filled with fluid?

Factory settings

The tables below list each setting in the 3350 Magmeter menus, all of the available options, and the factory settings that will be found in a new instrument.

No.	Setting Item		Setting Range	Initial Value	Settable Value
1	Parameter protection		2 menus	PROTECTION ON	PROTECTION ON, PROTECTION OFF
2	ID	No.	0000 TO 9999	0000	
3		Unit system	2 menus	Metric	Metric (metric system)
4		Flow rate unit	12 menus (Menus system)	L/s	l/s, L/min L/h ML/d m ³ /s m ³ /min m ³ /h Mm ³ /d BBL/s BBL/min BBL/h MBBL/d
	itions		12 menus (Inch system)		gal/s gal/min gal/h Mgal/d ft ³ /s ft ³ /min ft ³ /h Mft ³ /d BBL/s BBL/min BBL/h MBBL/d
5	t cond	Total unit	8 menus (Metric system)	mL	mL L m ³ km ³ Mm ³ mBBL BBL kBBL
	Measurement conditions		10 menus (Inch system)		gal kgal ft3 kft ³ Mft ³ mBBL BBL kBBL ACRE-in ACRE-ft
6	asn	Pipe outer diameter	10.00 to 300mm	60.00mm	[mm, in]
7	Me	Pipe material	10 menus Sound velocity; 1000 to 3700 m/s	PVC	PVC, PVDF, PEEK, PP, CARBON STEEL, STAINLESS STEEL, COPPER, other (sound velocity:[m/s, ft/s])
8		Wall thickness	0.1 to 50.00mm	4.50mm	[mm,in]
9		Lining material	7 menus Sound velocity: 1000 to 3700m/s	No lining	No lining, tar epoxy, mortar, rubber, Teflon, Pyrexglass, other (sound velocity:[m/s, ft/s])
10		Lining thickness	0.01 to 50.00		[mm, in]
11		Fluid type	3 menus Sound velocity: 500 to 2500m/s	Water	Water, sea water, other (Sound velocity: [m/s, ft/s])
12		Kinematic viscosity	0.0001 to 999.9999 x 10- 6m ² /s	1.0038 x 10-6m ² /s	[x10-6m ² /s, ft ² /s]
13		Sensor mounting method	2 menus	V	V,Z
14		Sensor type	2 menus	3-3350-100	3-3350-100, 3-3350-200

15		Zero adjustment	2 menus	Clear (adjusted)	Set zero, clear (factory set at clear)
16		Damping	0 to 100sec	5 sec	sec
17	ns	Low flow rate cut off	0 to 5 m/s in terms of flow velocity	0.001 L/s	Units are based on FLOW RATE UNIT.
18	conditio	Display 1st line contents	7 menus	Flow velocity (m/s)	Flow velocity, flow rate (ACTUAL), flow rate (%), forward total, reverse total, forward total pulse, recerse total pulse
19	Output	Display 1st line deci- mal point position		00000.000	Mark the decimal position
20		Display 2nd line contents	7 menus	Flow rate (L/s)	Flow velocity, flow rate (ACTUAL), flow rate (%), forward total, reverse total, forward total pulse, reverse total pulse
21		Display 2nd line deci- mal point position		00000.000	Mark the decimal position

No.		Setting Item		Settable Range	Initial Value	Settable Value
22			Flow span-1	0.3 to 10m/s in terms of flow velocity	10.0000L/s	Units are based on FLOW RATE UNIT.
23		Output	Flow span-2	0.3 to 10m/s in terms of flow velocity	0.0000L/s	Units are based on FLOW RATE UNIT.
24) go	Hysteresis	0 to 10%	5.00%	%
25		Analog	Burnout	4 menus	Hold	Hold, upper limit, lower limit, sero
26		/	Burnout timer	0 to 100sec	10sec	sec
27			Total action	3 menus	Start	Start, stop, reset
28		otal output	Pulse value	0.00001 to 999999	1mL	Units are based on TOTAL UNITS
29		no	Total pulse width	5 menus	5msec	5,10,50, 100, 200msec
30	conditions	ota	Burnout	2 menus	Hold	Hold, count
31	ndit		Burnout timer	0 to 100sec	10sec	sec
32	Output co	DC	O1 output type	5 output contents menus 3 alarm menus Flow switch range 0 to 10 m/s. Total switch range: 0.00001 to 99999999	NOT USED	NOT USED, Flow direction, Alarm [all, hard, process], Flow switches, Upper limit, Lower limit, Total switch. (Units are based on FLOW RATE UNITS and TOTAL UNITS selections.)
33		DC	O1 output action	2 menus		ON, OFF
34		DO	O2 output type	5 output contents menus 3 alarm menus Flow switch range 0 to 10 m/s. Total switch range: 0.00001 to 99999999	NOT USED	NOT USED, Flow direction,Alarm [all, hard, process],Flow switches, Upper limit, Lower limit, Total switch (Units are based on FLOW RATE UNITS and TOTAL UNITS selections.)
35		DC	O output action	2 menus		ON, OFF
36		Sp	an calibration	0 to ±200%	100.0%	%

Parameter Protection

Parameter Protection serves to protect the flow meter settings from unauthorized changes.

- The 3350 uses an Identification number (ID No.) to enable authorized changes.
- The ID number is factory set at 0000 and the Parameter Protection is turned ON.
- To change the ID number, the parameter protection must first be turned OFF:

Press:	Display shows:
	First line: "PAR. PROTECTION" Second line: "PROTECTION ON"
ENT	2nd line of display begins blinking.
	"PROTECTION OFF".
ENT	"INPUT ID NO.".
ENT	"0000" with first zero blinking.
\triangle	Use UP and RIGHT buttons to set the ID No. into the display
	Note: If ID No. is "0000" (factory set), press key to set the parameter protection to OFF.
ENT	First line: "PAR. PROTECTION" Second line: "PROTECTION OFF" * If "INPUT ERROR!" appears, the ID No. is incorrect. The display returns to the previous step.

Identification (ID) number

Press:		Display shows:
\triangle	4x	"MAINTENANCE MODE".
ENT		"CURRENT CALIBRATION".
	8x	"REGISTER ID NO."
ENT	2x	2nd line blinks
)	Press key and key to compose a new ID number.
ENT		"COMPLETE" is indicated about 1 second on 2nd line.
ESC)	Using $\stackrel{\text{\tiny ESC}}{\bigcirc}$ key and $\stackrel{\text{\tiny \triangle}}{\bigcirc}$ key to resume the measurement mode.

Note: To enable the new ID number, set the parameter protection to "PROTECTION ON".

Measure setup mode

METRIC or ENGLISH

- Metric system (factory set)
 Select to use the 3350 in a metric measurement system (meters and liters)
- Inch system
 Select to use the 3350 in an English measurement
 system (inches and gallons)

Press		Display shows
ENT ENT	3x	"MEASURE SETUP". "SYSTEM UNIT".

"METRIC".

"COMPLETE" is indicated about

"COMPLETE" is indicated about 1 second on 2nd line.

Use $^{\tiny{\text{\tiny ESC}}}$ key and $^{\bigcirc}$ key to resume measurement mode.

Cursor begins blinking

Set the flow rate unit

Depending on the measurement selection above, the flow rate can be set to measure in a variety of engineering units. Select one

- Metric system
 L/s (factory set)
 L/min
 L/h
 ML/d
 m3/s
 m3/min
 m3/h
 Mm3/d
 BBL/s
 BBL/min
 BBL/h
 MBBL/d
- Inch system gal/s gal/min gal/h Mgal/d ft3/s ft3/min ft3/h Mft3/d BBL/s BBL/min BBL/h MBBL/d

Press: Display shows:

3x "MEASURE SETUP".

"SYSTEM UNIT".

"FLOW UNIT".

"FLOW UNIT" blinks

6x "m3/h".

 \triangle

ENT

Stores the new setting into memory

Use $\stackrel{\text{ESC}}{}$ key and $\stackrel{\text{($\triangle$)}}{}$ key to resume measurement mode.

Set the total unit

Select the unit of total volume.

- Metric system
 mL (factory set)
 m3 km3 Mm3
 mBBL BBL kBBL
- Inch system
 gal kgal
 ft3 kft3 Mft3 mBBL
 BBL kBBL ACRE-in ACRE-ft

Press: Display shows:

1st line: [TOTAL UNIT] 2nd line: [mL]

2nd line blinks.

Repeatedly to select total unit.

Stores the new setting into memory

Use $\stackrel{\text{\tiny ESC}}{}$ key and $\stackrel{\text{\tiny (\triangle)}}{}$ key to resume measurement mode.

Adjust Zero point

The ZERO ADJUST allows the instrument to be set to ignore any electrical background noise in the application. There are two options:

- "SET ZERO" records the actual input as equal to zero.
- "CLEAR" sets the zero point to absolute "0".

To set the instrument to zero, completely close the valves upstream and downstream the flow meter so the sensors are detecting still water in a FULL PIPE.

If there is no valve or if the fluid flow cannot be stopped, select "CLEAR" instead of "ZERO ADJUST".

Any electrical noise in the system will not be factored out of

the measurement when "CLEAR" is used.

Press: Display shows:

 $\stackrel{\triangle}{}$ 2x "OUTPUT SETUP".

"ZERO ADJUST"

ENT

2nd line shows "SET ZERO"

"SET ZERO" blinks.
If "CLEAR" is blinking

press to go to "SET ZERO".

The static signal being sensed in the pipe will be set to represent zero flow.

Use $^{oxed{ iny ESC}}$ key and $^{igtriangle{ iny Large}{ iny Large}}$ key to resume measurement mode.

Set the Damping

The DAMPING function attenuates any instability in the flow measurement that may be present due to piping limitations or flow profile disturbances.

Higher damping times result in smoother output.

A time constant is set (response time of about 63%).

Damping range: 0 to 100 sec in 1 sec increments.

Note: If Damping is set to 0 sec, the response time is:

System cycle: 0.2 sec

Dead time: less than 0.2 sec

Time constant: 0.1 sec

Press: Display shows:

 $\stackrel{\triangle}{}$ x2 "OUTPUT SETUP".

"ZERO ADJUST".

"DAMPING".

Cursor blinks

Press to set value from 0 to 100 seconds

Stores the new setting into memory

Use (sc) key and (Δ) key to resume measurement mode.

Set the Low Flow Rate Cutoff

The flow rate display, the analog output (4-20 mA) and the totalizer can be disabled when the flow rate falls below this setting. Use this function to prevent output response to invalid input such as flow signals generated by vibration, convection or electrical noise.

Set range: equivalent to 0 to 5 m/s in the selected flow rate units. Factory set at 0.001 L/s

Output

Flow rate

Low flow rate cut setting value

Press: Display shows:

X2 "OUTPUT SETUP".
"ZERO ADJUST".

x2 "CUTOFF".

Cursor blinks

Press to set flow rate cutoff

Stores the new setting into memory

Configuring the Display

The 3350 display has two lines with 16 characters on each line. Each line can be set to display a different value:

VELOCITY

Display the linear velocity of the flow. Units are m/s for METRIC systems or ft/s for ENGLISH systems.

· The decimal point position is fixed.

FLOW RATE

Display the flow rate in the volumetric units selected (GPM, L/m, BBL/DAY, etc.

FLOW RATE (%)

Display the flow rate as a percentage of the flow range setting.

±TOTAL (ACTUAL)

Display the totalizer value derived from the actual flow rate. Select the total resulting from forward flow or from reverse flow.

±TOTAL (PULSE)
 Display the totalizer value that is derived from the pulse output (DO1 or DO2)

Press: Display shows:

(A) 2x "OUTPUT SETUP".

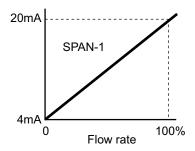
"ZERO ADJUST".

3x "DISPLAY" "1ST ROW"
Press again to select "2ND ROW".

"1ST ROW" and "FLOW RATE"
FLOW RATE is blinking

Use \bigwedge key and \triangleright key to set new value.

"1ST ROW DIGIT" and "****.**"


Scroll to select decimal position.

"1ST ROW DIGIT" and "COMPLETE" breifly, then
"1ST ROW DIGIT" and new display value New display value is blinking.

Use $^{\text{ESC}}$ key and $^{\text{C}}$ key to resume measurement mode.

Set the 4-20 mA Range (FLOW SPAN-1)

- The analog output (4-20 mA) corresponds to the range setting.
- If "INPUT ERROR" appears, the setting is beyond the operating range of the instrument.
- · After changing the RANGE, adjust zero point.
- If "PIPING PARAMETERS" or "FLOW UNIT" are changed, FLOW SPAN must be reset.

Press: Display shows:

 $\stackrel{ riangle}{ riangle}$ 2x "OUTPUT SETUP".

"ZERO ADJUST".

"RANGE".

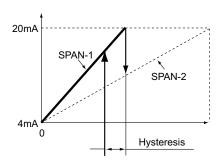
Cursor blinks

Press again to select "FLOW SPAN-1".

Cursor blinks

Use key and key to set maximum flow rate.

Stores the new setting into memory


Press \triangle to set FLOW-SPAN-2

or

Use (S) key and (\triangle) key to resume measurement mode.

Set Dual 4-20 mA Ranges (FLOW SPAN-2)

- Use FLOW SPAN-2 to set the 4-20 mA output to automatically switch scales as the flow rate varies.
- If it is not used, set the range of FLOW SPAN-2 to 0.
- The HYSTERESIS can be set from 0 and 10% of the smaller range.
- When the source of DO1 or DO2 is set to "FLOW SPAN-2", a contact outputs "SPAN-2" action. Select [ACTIVE ON] or ACTIVE OFF separately.
- Always reset the ZERO ADJUST after changing the range value.
- The dual ranges can be set to measure reverse flow.
 Use the "-" sign in the first position when setting the reverse flow range.

1 1000.	Diopidy onono.
	"FLOW SPAN-2".
ENT	Cursor blinks
Use 🛆 key an	key to set maximum flow rate.
ENT	Stores the new setting into memory
ENT ENT	"HYSTERESIS". Cursor blinks
Use 🛆 key an	key to set hysteresis.
ENT	Stores the new setting into memory
	"BURNOUT"
ENT	Current selection blinks
	Scroll to new setting.
ENT	Stores the new setting into memory
	"BURNOUT TIMER" and "10 s"
ENT	Cursor blinks
Use key an	nd key to set new time delay.
ENT	Stores the new setting into memory.
Use key and	$d \bigcirc$ key to resume measurement mode.

Display shows:

Set BURNOUT mode for the 4-20 mA output

BURNOUT is the error mode for the 4-20 mA output.

Specify how the 4-20 mA output will react during loss of signal, etc. due to hardware error, empty pipe or ingress of bubbles.

Press:

The options are:

HOLD (factory set): Retain the last good value

OVER SCALE: Outputs 23.2 mA.
UNDER SCALE: Outputs 0.8 mA.
ZERO: Outputs 4 mA.
BURNOUT TIMER 0 to 100 seconds

(factory set at 10 sec).

(time delay from error detection to response)

Set Pulse Output and Totalizer functions

Set the pulse value, pulse width and preset value.

Then, reset the total value to a preset value (factory set at 0), and start a total.

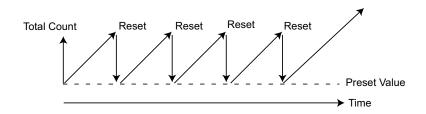
BURNOUT(TOTAL)

Determines the behaviour of the totalizer when an error occurs due to an empty pipe interior or bubbles mixed in fluid (common to total indication and total pulse output).

HOLD: Stops the total (as factory set).

COUNT: Continues the total according to a flow rate marked immediately before the error occurrence.BURNOUT TIMER Sets the time from error occurrence to error processing.I Settable range: 0 to 100 sec (factory set at 10 sec). The total continues until the burnout timer is actuated.

Press:	Display shows:	Press:	Display shows:
2x	OUTPUT SETUP		TOTAL PRESET and 0 mL
ENT	ZERO ADJUST	ENT	Cursor blinks.
<u>△</u> 4x	"RANGE" and "FLOW RATE"	Use A key a	nd key to set the value where the
ENT	"FLOW RATE" blinks	totalizer will star	
	"TOTAL" blinks	ENT	Stores the new value into memory
ENT	"TOTAL MODE" and "START"		BURNOUT (TOTAL) and HOLD
	"PULSE VALUE" and 1mL"	ENT	HOLD blinks.
	(or current selection)		Scroll to select BURNOUT action.
ENT	Cursor blinks	ENT	Stores the new setting into memory
Use key a by each pulse.	nd key to set the volume represented		"BURNOUT TIMER" and "10 s"
ENT	Stores the PULSE VALUE into memory	ENT	Cursor blinks
	PULSE WIDTH and 5.0 ms (or current	Use 🛆 key a	nd key to set new time delay.
selection)		ENT	Stores the new setting into memory.
	Cursor blinks on 2nd line.	Use Esc key ar	nd (key to resume measurement mode.
	Press to scroll to select pulse width value		
ENT	Stores the new value into memory		


Start, Stop and Reset the Totalizer

• The total is started, stopped or reset manually, from this menu.

START: Total output starts STOP: Total output stops

RESET: Reset the total memory to the preset value.

This setting simultaneously resets both forward total memory and reverse total memory. After performing a RESET the total function will remain STOPPED until "START" is executed.

Press:		Display shows:
	2x	OUTPUT SETUP
ENT		ZERO ADJUST
	4x	"RANGE" and "FLOW RATE"
ENT		"FLOW RATE" blinks
		"TOTAL" blinks
ENT		"TOTAL MODE" and "START"
ENT		"START" blinks
\triangle		Scroll to select RESET or STOP.
ENT		START, STOP or RESET is implemented.
After res	etting, th	ory will be reset to the PRESET value e total operation automatically stops. , execute "START":
ENT		"STOP" blinks
		Scroll to select START.
ENT		START is implemented.
Use Esc	key and	$d \bigcirc$ key to resume measurement mode.

Set Relay Outputs (DO1 and DO2)

DO1 is an open collector switch output rated at 30 V DC, 100 mA maximum load

DO2 is a dry contact relay rated at 220 V AC/30 V DC, 1 A maximum load.

The following options are common to DO1 and DO2:

NOT USED Disables the contact output.

+TOTAL PULSE

DO1 or DO2 will output a pulse when the volume set by PULSE VALUE is measured in the forward total pulses.

-TOTAL PULSE

DO1 or DO2 will output a pulse when the volume set by PULSE VALUE is measured in by the reverse total pulses.

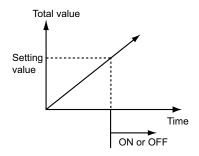
FLOW SPAN-2

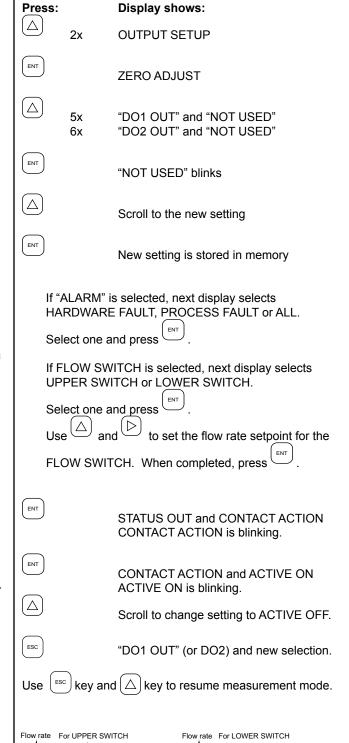
Select a contact output at SPAN-2 measurement status (forward automatic 2 ranges, forward/reverse automatic 2 ranges).

ALARM

- HARDWARE: DO1 or DO2 will output a pulse when a EEPROM error is detected.
- PROCESS: DO1 or DO2 will output a pulse when the sensor signal is not received or is unstable.

FLOW SWITCH


- UPPER SWITCH: DO1 or DO2 will output a pulse when the flow rate is above the setpoint.
- LOWER SWITCH: DO1 or DO2 will output a pulse when the flow rate is below the setpoint.


TOTAL SWITCH

DO1 or DO2 will output a pulse when the total value exceeds the setpoint.

CONTACT ACTION

- ACTIVE ON: Norm. OFF (DO1) or norm. open (DO2).
- ACTIVE OFF: Norm ON (DO1) or norm closed (DO2).

Hysteresis

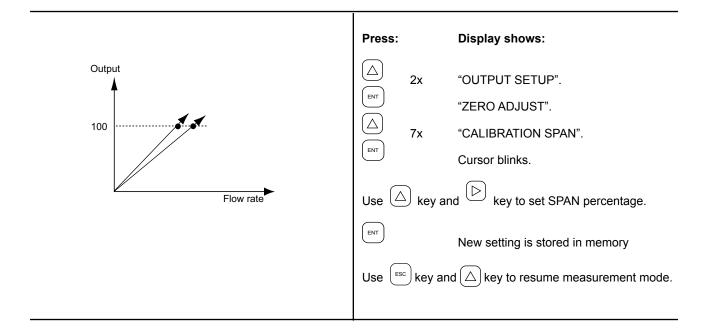
Time

ON or OFF

Hysteresis

Time

ON or OFF


Adjust the 4-20 mA Span

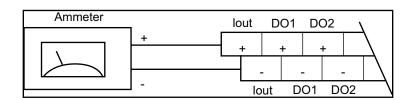
The output values can be offset to allow for the compensation if the 3350 does not match other external reference measurements. Use this function to make small adjustments to match the 4-20 mA output to a PLC or Chart Recorder.

Example: A flow rate measurement performed by a monitoring agency has determined that the flow rate as measured by the 3350 is 5% too low.

To make a 5% adjustment to the flow rate display, the 4-20 mA output and the TOTAL PULSE output, set th CALIBRATION SPAN to +105%.

- If the output values are 5% low, set the CALIBRATION SPAN to 95%.
- Use the "-" sign to change the result from FORWARD to REVERSE flow.
- CALIBRATION SPAN range: ±200%
- · ALL OUTPUT values are affected by this setting!
- This functions calculates new values by this formula:

Adjust the 4-20 mA Calibration


Use this function to make small adjustments to the 4 mA and 20 mA output values repectively.

- The calibration is performed so as to obtain 4 mA and 20 mA when the analog signal (4-20 mA DC) output is 0% and 100%, respectively.
- Connect an ammeter to lout terminals as shown.

Test Current Output with External equipment

This function is similar to the CURRENT CALIBRATION, but it allows any current output value to be set instead of just 4 and 20 mA. Use it to check and adjust the input of receiver equipment that is connected to the 4-20 mA output signal from the 3350.

Output range limits: 0.8 mA minimum to 23.2 mA maximum.

Press:		Display shows:	Press:		Display shows:
	x4	"MAINTENANCE MODE".		x4	"MAINTENANCE MODE".
ENT		"CURRENT CALIBRATION".	ENT		"CURRENT CALIBRATION".
ENT	2x	CALIBRATION and 4 mA blinking			"CURRENT OUTPUT SETTING".
		(UP) or (Down) key to obtain a the ammeter.	ENT		"OUTPUT SETTING" and current value.
ENT		New setting is stored in memory	ENT		Current value blinking
		CALIBRATION and 20mA			(UP) or Down) key to set any om 0.8 mA to 23.2 mA.
ENT		CALIBRATION and 20mA blinking	ENT		New set value is being generated.
	Press	(UP) or (Down) key to obtain	ENT		New setting is stored in memory
ENT	20 mA c	on the ammeter.	ESC		Constant current output is terminated and measurement value resumes.
\bigcup		New setting is stored in memory	LICA ES		1 (2)
Use	key an	$d \triangle$ key to resume measurement mode.	Use (^{ES}) key an	$d\left(\triangle\right)$ key to resume measurement mode.

Test the DO1 output in TOTAL PULSE mode

- The output of DO1 can be checked by designating pulse rate from 1 to 100 pulses per second.
- The pulse width setting is integral to the pulse rate allowable. Set the rate taking the pulse width into account.

Example: If the pulse width is set at 50 ms, the TOTAL PULSE output cannot exceed 10 pulses/s To calculate:

1000 \div (pulse width in ms x 2) = max pulse rate

- DO1 (transistor open collector) and DO2 (relay contact) operate simultaneously.
- DO2 (relay contact) always operates at the rate of 1 pulses per second.

CAUTION

Before initiating this function, insure that any devices connected to the DO1 and DO2 pulse output will not create a hazard.

Press:		Display shows:
\triangle		"MAINTENANCE MODE".
ENT		"CURRENT CALIBRATION".
		"TOTAL PULSE" and "10 PULSE/s" (or current setting)
ENT		Cursor begins blinking
		and to set the required pulse r DO1. (From 1 to 100 pulses/second)
ENT		DO1 output begins at set pulse rate. DO2 output begins at 1 pulse/second.
ESC		DO1 and DO2 PULSE OUTPUTS stop
Use	and	to resume the measurement mode.

Set Serial Communication parameters

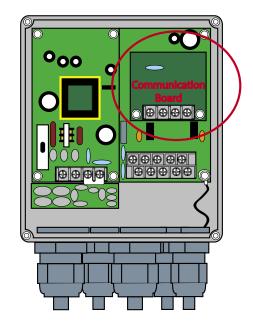
If the optional serial communication module is installed, use this function to set these parameters:

Transmission type: RS-232C (factory set)

RS-485

Transmission rate (baud rate):

2400 BPS 4800 BPS


9600 BPS (factory set)

19200 BPS

Parity: NON (factory set), ODD, EVEN

Stop bits: 1 BIT (factory set), 2 BITS.

Slave No.: 0 (factory set) to 63.

Press:		Display shows:	ENT	NON begins blinking.
		"MAINTENANCE MODE".		Scroll to required setting.
ENT		"CURRENT CALIBRATION".	ENT	New setting is saved to memory.
	5x	"COMMUNICATION"		COM, STOP BIT and 1 BIT
ENT	2x	COM. MODE and RS-232C (factory set) RS-232C is blinking	ENT	1 BIT begins blinking
\triangle		COM. MODE and RS-485		Scroll to 2BITS
ENT		RS-485 is saved to memory	ENT	New setting is saved to memory.
\triangle		COM. BAUD RATE and 9600 BPS		•
ENT		9600 BPS begins blinking	ENT	COM.SLAVE NO. and 00 (factory set) Cursor begins blinking
\triangle		Scroll to required baud rate		Use and to set from 00 to 63
ENT		New setting is saved to memory.	ENT	New setting is saved to memory.
		COM. PARITY and NON	ES	and to resume the measurement mode.

Check the software version

• Use this function to identify the version of the operating software in this instrument.

Press: Display shows:

MAINTENANCE MODE

CURRENT CALIBRATION

9x VER.NO. and SIG03A (Or current software revision number)

and to resume the measurement mode.

TROUBLESHOOTING AND MAINTENANCE

If indication is abnormal

Symptom	Cause
No Display	Power is not turned on. Source voltage is too low. Fuse is blown LCD is defective. DC power polarity is inverted.
1st line is indicated black	Source voltage is too low. DC power polarity is inverted. LCD is defective.
Indication is undefined	Hardware error.
Indication is dim	Ambient temperature is too low (below -20°C). Raise the temperature. LCD is defective. Replace the LCD unit.
Entirely black	Ambient temperature is too high (50°C or higher). Lower the temperature.
LED is always RED	Sensor output is abnormal. Possible causes: Pipe is not full. Sensors are exposed to bubbles. Sensor cable connection is not secure Sensor mounting is incorrect (check electrode spacing, orientation and position.) Inadequate seal between face of electrodes and pipe surface. Pipe condition is interfereing with ultrasonic signal (scaling, lining, etc.)

If keying is abnormal

Symptom	Cause
No response to key press.	Hardware error.
Certain key is not responded. Action is not as defined.	

If measurement value is abnormal

Symptom	Cause	Remedy	
Minus (–) symbol indicated on measurement value.	Connection between main unit and sensor units (upstream, downstream) are inverted.	Connect correctly.	
	So is actual flow.		
Measurement value fluctuates excessively while flow rate is constant.	Straight part of pipe is not enough.	Select where 10D upstream and 5D downstream can be secured.	
	Pump, valve or others which disturb the flow are located nearby.	Separate them at least 30D.	
	Pulsation exists actually.	Set the damping to longer response time.	

Symptom	Cause	Remedy		
Measurement value does not	Ultrasonic wave is not propagated into piping, whereby reading is held.			
change whileflow rate does (LED lit red).	Installation is poor.			
	 Pipe specifications are wrong. Sensor is mounted on welding. Sensor mounting dimensions are wrong. Silicone filler is not applied properly when mounting the sensor. Sensor cable connection is poor. 	Upon checking, remove the sensor, apply silicone filler, and slightly offposition the sensor.		
	 Sensor mounting is poor Mounting dimensions. There is a gap between sensor and piping. 	 Mounting the sensor in parallel with pipe, allowing correct sensor unit spacing. Mount the sensor properly so that it is kept in close contact with the pipe. 		
	2. Pipe or fluid is problematic	 Mount the sensor properly so that it is kept in close contact with the pipe. Locate a place which is completely filled on the same piping line, and shift the sensor there. Mount the sensor at lowermost position on piping line. Eliminate ingress of bubbles. Raise the pumping well level. 		
	Not completely filled.			
	Ingress of bubbles			
	Bubbles are introduced if reading is normal when flow is stopped. If mounted immediately downstream a valve, cavitation causes the same phenomenon as when bubbles are introduced.	Eliminate ingress of bubbles. Raise the pumping well level. Check the pump shaft seal. Retighten the negative pressure piping flange. Avoid a flow as casade to pumping well.		
	Excessively TURBID			
	More TURBID than inflow sewage water or return sludge. • Scales are on inside wall of old pipe. • Lining is thick. • Lining is peeled. There is a gap between lining and pipe. • Sensor is mounted on uneven pipe or tapered pipe. 3. Influence by external noise.	 Move the sensor to smaller pipe diameter on the same line. Move the sensor to another place or pipe. 		
	 There is radio broadcasting station nearby. There is heavy traffic (automobiles trains, etc.) near the measurement site. 4. Hardware error. 	 Mount the sensor on straight pipe. Reduce the length of main unit sensor cable to a minimum. Connect the main unit and pipe to ground. See "Section 1.6.6. Remedying a hard-		
		ware fault."		

Symptom	Cause	Remedy	
Flow rate will not go to zero when	Water is moving in pipe.	Normal	
flow is stopped.	Zero adjustment is not correct.	Reset zero adjustment when water is completely still.	
	Sensors are located at an air pocket, or pipe is empty (LED lit red).	Normal	
Flow rate is incorrect.	Pipe parameters are different from the actual values.	Input correct dimensions in PIPE PARAMETERS. Inside diameter error of 1% proceduces about 3% measurement	
	Scales exist on wall of old pipe.	error. Treat scale buildup inside pipe as lining.	
	Straight part of pipe is not enough (10D upstream and 5D downstream cannot be obtained).	Find a better place for mounting the sensor (more straight pipe upstream of disturbance).	
		There must be no disturbance within 30D upstream. Pump, valve, joint pipe, etc. are not allowed.	
		Mount the sensor at different angles with respect to pipe cross section until an average is obtained.	
	Pipe is not filled with water or is has accumulated sediment causing volumetric error.	Reading rises as cross-sectional area reduces. Move to vertical pipe.	

Symptom	Cause	Remedy
Current output is incorrect.	Range setting is incorrect.	Set the range correctly.
Current output is not 4 mA when flow rate is 0.	Analog output is not calibrated.	Calibrate the analog output.
Current output is 0 mA.	4-20 mA loop wiring is open.	Check 4-20 mA loop wiring.
Output is over 20 mA.	"OVERFLOW" is indicated on LCD.	Flow rate is over range. Adjust Output Range settings.
Output is below 4 mA.	"UNDERFLOW" is indicated on LCD.	Backflow Set the upstream and downstream properly.
Measurement value varies but analog output is constant.	Output load is above 600Ω.	Reduce the output load to less than 600Ω .
Analog output does not match the measurement value.	Analog output is not calibrated.	Calibrate the analog output.
Output remains unchanged even after analog output calibration.	Hardware error.	Contact technical support.

WARNING!

- Turn off power before replacing the fuse.
- · Fuse specifications
- AC power source (100 or 200 V): 5.2 mm (diameter) x 20 mm (long), 250 V, 0.5 A.
- DC powered source: 5.2 mm (diameter) c 20 mm (long), 250 V, 1 A.
- 1. Loosen 4 screws from the flow transmitter front, and open the cover.
- 2. Detach the fuse holder from the power supply board, and replace the fuse. Then, return the fuse holder in place
- 3. Close the cover, and tighten 4 screws.

CAUTION

Close cover before restoring power.

Replacing the relay

DO2 is a relay contact with a life span of 20,000 operations (rate load). Replace it before the end of its life by estimating the number of contact operations.

To replace the fuse:

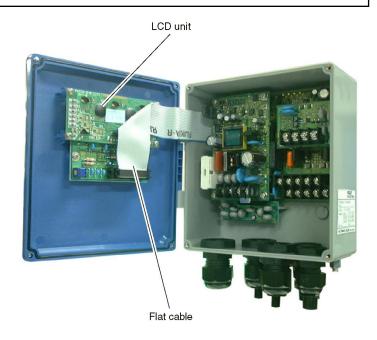
- 1. Turn off power and open the cover.
- 2. Pull the relay from the socket as illustrated below.
- 3. Insert a new relay into the socket. Seat the relay firmly to engage the relay locking claws.
- 4. Close the cover and turn on power.
- 5. Set the maintenance mode to "STATUS OUTPUT", and check the relay ON and OFF actions.

• High voltage is present inside the cover. Turn on power only after closing the cover.

Loosen the relay module by pushing from the bottom and the top.

Pull the loose module out of the socket.

Replacing the LCD


Over the life of the LCD the contrast will deteriorate gradually. Maximum life expectancy of the LCD is 7 years. Replace the LCD after 5 years of normal use for troublefree performance.


- 1. Turn off power and open the cover.
- 2. Disconnect the flat cable connector.
- 3. Loosen 6 screws from the LCD assembly.
- 4. Mount a new LCD assembly.
 - Be careful to insert the keypad and LED so they are aligned with the cover openings and are not pinched or stressed by the cover.
- 5. Reconnect the flat cable connector.
- 6. Close the cover and turn on power.
- 7. Make sure the LCD is working, and that keys respond properly.

WARNING!

Turn off power BEFORE opening cover. AC Voltages inside!

Piping data: Acoustic Velocity in Solids

Material	ft/sec	m/sec
Arcrylic	8954	2730
Aluminum	10102	3080
Aluminum (rolled)	9971	3040
Aluminum (2024)	10365	3160
Asbestos Cement	7216	2200
Brass (Naval)	6724	2050
Carbon Steel	10516	3206
Cast Iron	10594	3230
Copper	7413	2260
Copper (annealed)	7626	2325
Copper-Nickel (70-30)	7446	2270
Copper-Nickel (90-10)	6757	2060
Ductile Iron	9840	3000
FRP	8216	2505
Glass. Crown	9315	2840
Glass, Pyrex	10758	3280
Glass, Quartz	11546	3520
Gold	3936	1200
Inconel	9906	3020
Iron	10611	3235
Iron Ductile	9840	3000
Lead	7118	2170
Lucite	4133	1260
Mild steel	10611	3235

Material	ft/sec	m/sec
Monel	8922	2720
Mortar	8200	2500
Nickel	9709	2960
Nylon	7872	2400
Nylon, 6-6	3510	1070
Polyethylene (LD)	6363	1940
Polyehtylene (HD)	7577	2310
PVC, CPVC	7872	2400
Steel, 1% carbon	10562	3220
Steel, galvanized-standard	10590	3223
Steel, harden 1% carbon	10332	3150
Stainless Steel-302	10234	3120
Stainless Steel-304	10516	3206
Stainless Steel-316	10414	3175
Stainless Steel-347	10168	3100
Stainless Steel-410	9807	2990
Stainless Steel-430	11021	3360
Tar epoxy	6560	2000
Tin, rolled	5478	1670
Titanium	10250	3125
Tungsten, annealed	9479	2890
Tungsten, drawn	8659	2890
Tungsten, carbide	13054	3980
Zinc, rolled	8003	2440

Acoustic Velocity of Water (Listed at varying temperatures)

Temp. (°C)	Acoustic Velocity (m/s)	Temp. (°C)	Acoustic Velocity (m/s)
0	1402.74	26	1499.64
2	1412.57	28	1504.68
4	1421.96	30	1509.44
6	1430.92	32	1513.91
8	1439.46	34	1518.12
10	1447.59	36	1522.06
12	1455.34	38	1525.74
14	1462.70	40	1529.18
16	1469.70	42	1532.37
18	1476.35	44	1535.33
20	1482.66	46	1538.06
22	1488.63	48	1540.57
24	1494.29	50	1542.84

Temp. (°C)	Acoustic Velocity (m/s)	Temp. (°C)	Acoustic Velocity (m/s)
52	1544.95	78	1555.18
54	1546.83	80	1554.81
56	1548.51	82	1554.30
58	1550.00	84	1553.63
60	1551.30	86	1552.82
62	1552.42	88	1551.88
64	1553.35	90	1550.79
66	1554.11	92	1549.58
68	1554.70	94	1548.23
70	1555.12	96	1546.75
72	1555.37	98	1545.14
74	1555.47	100	1543.41
76	1555.40		

Acoustic Velocity in Fluids

Substance	Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
Acetic acid	CH₃COOH	20	1159	
Acetic anhydride	(CH ₃ CO) ₂ O	20	1180	0.789
Acetic acid, anhydride	(CH ₃ CO) ₂ O	20	1180	0.769
Acetonitrile	C ₂ H ₃ N	25	1290	0.441
Acetonylacetone	C ₆ H ₁₀ O ₂	25	1399	
Acetylene dichloride	C,H,Cl,	25	1015	0.400
Acetylene tetracloride	C ₂ H ₂ Br ₄	25	1027	
Acetylene tetracloride	C ₂ H ₂ Cl ₄	25	1147	1.156 (15°C)
Ethyl alcohol	C ₂ H ₆ O	25	1207	1.396
Alkazene-13	C ₁₅ H ₂₄	25	1317	
Alkazene-25	C ₁₀ H ₁₂ Cl ₂	25	1307	
2-amino-ethanol	C ₂ H ₇ NO	25	1724	
2-aminotolidine	C ₇ H ₂ N	25	1618	4.394 (20°C)
4-aminotolidine	C ₇ H ₉ N	25	1480	1.863 (50°C)
Ammonia	NH ₃	-33	1729	0.292
1-amyl alcohol	C ₅ H ₁₂ O	25	1204	4.374
Aminbenzene	C ₆ H ₅ No ₂	25	1639	3.63
Aniline	C ₆ H ₅ NO ₂	20	1659	1.762
Azine	C ₆ H ₅ N	25	1415	0.992
Benzene	C ₆ H ₆	25	1306	0.711
Benzol	C ₆ H ₆	25	1306	0.711
Bromine	Br ₂	25	889	0.323
Bromobenzene	C ₆ H ₅ Br	25	1170	0.693
1-bromo-butane	C₄H₀Br	20	1019	0.49 (15°C)
Bromoethane	C ₂ H ₅ Br	20	900	0.275
Bromoform	CHBr ₃	20	918	0.654
n-butane	C ₄ H ₁₀	-5	1085	
2-butanol	C ₄ H ₁₀ O	25	1240	3.239
sec-butyalcohol	C ₄ H ₁₀ O	25	1240	3.239
n-butyl bromide	C₄H ₉ Br	20	1019	0.49 (15°C)
n-butyl chloride	C ₄ H ₉ Cl	25	1140	0.529
tert butyl chloride	C ₄ H ₉ Cl	25	984	0.646
Butyl oleate	C ₂₂ H ₄₂ O ₂	25	1404	0.529
2,3 butylene glycol	$C_4H_{10}O_2$	25	1484	
Carbinol	CH₄O	25	1076	0.695
Carbitol	C ₆ H ₁₄ O ₃	25	1458	
Carbon dioxide	CO ₂	-37	839	0.137
Carbon disulphide	CS ₂	20	1158	0.290
Carbon tetrachloride	CCI₄	20	938	0.608
Cetane	C ₁₈ H ₃₄	20	1338	4.32
Chlorobenezene	C ₆ H ₉ CI	20	1289	0.722 (25°C)

Acoustic Velocity in Fluids

Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
		, , ,	0.529
7 0	20	931	0.383
C ₂ H7Cl	25	1058	0.378
C ₃ H ₈ O	25	1554	
	25	1554	
C ₂ H ₂ NO	25	1724	
C,H,O	20	1541	4.29 (40°C)
C ₇ H ₈ O	20	1500	5.979 (40°C)
C ₂ H ₂ N	25	1290	0.441
C ₅ H ₁₂	20	1284	1.31 (17°C)
C ₆ H ₁₂ O	25	1454	0.071 (17°C)
	25	1423	
C ₁₀ H ₂₂	25	1252	1.26 (20°C)
	25	1235	
	25	1235	
C ₄ H ₆ O ₂	25	1236	
C ₁₀ H ₂₃ N	25	1256	
C ₂ H ₄ Br ₂	25	995	0.79 (20oC)
C ₂ H ₂ Br ₂	25	935	
C ₆ H ₂₂ O ₄	25	1408	
C ₄ H ₈ Cl ₂₀	25	1304	
C ₂ H ₈ Cl ₂ O ₂	25	1391	
CCI ₂ F ₂ CCI ₂	25	774.1	
C ₂ H ₂ Cls	25	1061	
C ₂ H ₂ Cl ₂	25	1010	
CHCl ₂ F	0	891	
CC ₄ Cl ₂ F ₆	25	669	
C ₄ H ₆ Cl ₂	25	1220	
CH2Cl2	25	1070	0.31
CCIF ₂ - CCIIF ₂	25	665.3	
C ₄ H ₁₀ O	25	985	0.311
	25	1586	
C ₆ H ₁₄ O ₃	25	1458	
C ₄ H ₉ NO	25	1442	
	C ₃ H ₈ O C ₉ H ₈ O C ₂ H ₇ NO C ₇ H ₈ O C ₇ H ₈ O C ₇ H ₈ O C ₂ H ₂ N C ₅ H ₁₂ C ₆ H ₁₂ O C ₁₀ H ₂₀ C ₂ H ₄ Br ₂ C ₂ H ₄ Br ₂ C ₄ H ₈ Cl ₂ O C ₂ H ₈ Cl ₂ O ₂ C ₁ H ₂ Cl ₂ C ₂ H ₂ Cl ₂ C ₁ C ₁ C ₁ C ₁ C ₂ C ₂ H ₂ Cl ₂ C ₂ H ₂ Cl ₂ C ₂ C ₁ C ₁ C ₂ C ₃ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁ C ₁ C ₁ C ₁ C ₂ C ₄ C ₁	C4H9CI 25 CHCI3 20 C3H7CI 25 C3H8O 25 C9H8O 25 C2H7NO 25 C7H8O 20 C7H8O 20 C2H2N 25 C5H12 20 C6H12O 25 C10H22 25 C10H20 25 C10H20 25 C10H20 25 C10H20 25 C10H20 25 C10H20 25 C2H4BR2 25 C2H2BR2 25 C2H2BR2 25 C2H2BR2 25 C2H2CI2 25 C2H2CI2 25 CCH2F2CCI2 25 CHCI2F 0 CC4H6CI2 25 CH2CI2 25 CCH2CIE 25 CCH1F2 25 CCH1F2 25 CCH1F2 25 CCH1A10O3 25 C4H10O3 25	C₄H₀CI 25 1140 CHCI₃ 20 931 C₃H7CI 25 1058 C₃H₀O 25 1554 C₃H₀O 25 1554 C₃H₀O 25 1724 C₂H₁NO 25 1724 C₂H₀O 20 1500 C₂H₂N 25 1290 C₂H₁N 25 1290 C₂H₁N 25 1290 C₂H₁N 25 1290 C₂H₁N 25 1234 C₃H₁N 25 1252 C₃H₁N 25 1252 C₃H₂N 25 1235 C₁₀H₂N 25 1235 C₃H₀O₂ 25 1236 C₂H₂B₁₂ 25 935 C₂H₂B₂ 25 935 C₃H₂O₂ 25 1304 C₂H₂C₂ 25 1304

Acoustic Velocity in Fluids

Substance	Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
1,2-bis (diffluoramino) butane	C ₄ H ₈ (NF ₂) ₂	25	1000	
1,2-bis (diffluouramino)- 2-methylpropane	C ₄ H ₉ (NF ₂)s	25	900	
1,2-bis (difflouramino) propane	C ₃ H ₆ (NF ₂) ₂	25	960	
2,2-bis (diffluoramino) propane	C ₃ H ₆ (NF ₂) ₂	25	890	
2,2-dihydroxy- dilethyrther	$C_4H_{10}O_2$	25	1586	
Dihdroxyethane	C ₂ H ₆ O ₂	25	1658	
1,3-dimethyl- benzene	C ₈ H ₁₀	20	1343	0.749 (15°C)
1,2-dimethyl- benzene	C ₈ H ₁₀	25	1331.5	0.903 (20°C)
1,4-dimethyl- benzene	C ₈ H ₁₀	20	1334	0.662
2,2-dimethyl- butane	C ₆ H ₁₄	25	1079	
Dimethyl ketone	C ₃ H ₆ O	25	1174	0.399
Dimethyl pentane (47)	C ₇ H ₁₆	25	1063	
Dimethyl phthalate	C ₈ H ₁₀ O ₄	25	1463	
Dilodo-methane	CH ₂ I ₂	25	980	
Dioxane	C ₄ H ₈ O ₂	25	1376	
Dodecane (23) 1, 2-ethanediol	C ₁₂ H ₂₆ C ₂ H ₆ O ₂	25 25	1279 1658	1.80
Ethanenitrile	C ₂ H ₃ N	25	1290	0.441
Ethanoic anhydride (22)	(CH ₃ CO) ₂ O	25	1180	0.769
Ethanol	C ₂ H ₆ O	25	1207	1.39
Ethanol amide	C ₂ H ₇ NO	25	1724	
Ethoxyethane	C ₄ H ₁₀ O	25	985	0.311
Ethyl acetate	C ₄ H ₈ O ₂	20	1164	0.499
Ethyl alcohol	C ₂ H ₆ O	25	1207	1.396
Ethyl benzene	C ₃ H ₁₀	20	1338	0.797 (17°C)
Ethyl Bromide	C₂H₅Br	20	900	0.2.75
Ethyliodide	C ₂ H ₅ I	20	876	0.29
Ether	C ₄ H ₁₀ O	20	1006	0.336
Ethyl ether	C ₄ H ₁₀ O	25	985	0.311
Ethylene bromide	C ₂ H ₄ Br ₂	25	995	0.79
Ethylene chloride	C ₂ H ₄ Cl ₂	25	1193	0.61

Ethylene glycol		Temp. (^O C)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
j	C ₂ H ₆ O ₂	20	1666	21.112
50% glycol 50% H ₂ 0		25	1578	
d-fenochone	C ₁₀ H ₁₆ O	25	1320	0.22
d-2-fenochone	C ₁₀ H ₁₆ O	25	1320	0.22
Fluoro-benzene (46)	C ₆ H ₅ F	25	1189	0.584
Formaldehyde, methylester	$C_2H_4O_2$	25	1127	
Formamide	CH₃NO	25	1622	2.91
Formic asid, amide	CH₃NO	25	1622	2.91
Freon 12		25	774.2	
Furfural	C ₅ H ₄ O ₂	25	1444	
Furfuryl alcohol	C ₅ H ₆ O ₂	25	1450	
Fural	C ₅ H ₄ O ₂	25	1444	
2-furaldehyde	C ₅ H ₄ O ₂	25	1444	
2-furancarboxaide- hyde	$C_5H_4O_2$	25	1444	
2-furyl-methanol	$C_5H_6O_2$	25	1450	
Gallium	Ga	30	2870	
Glicerin	C ₃ H ₆ O ₃	20	1923	1188.5
Glycerol	C ₃ H ₅ O ₂	25	1904	757.1
Glycol	$C_2H_6O_2$	25	1658	
Heptane	C ₇ H ₁₆	25	1131	0.598(20°C)
n-heptane	C ₇ H ₁₆	25	1180	
Hexachloro- cyclopentadiene	C₅CI ₆	25	1150	
Hexadecane	C ₁₆ H ₃₄	25	1338	4.32(20°C)
Hexalin	C ₃ H ₁₀	20	1338	0.797 (17°C)
Hexane	C ₂ H ₅ Br	20	900	0.2.75
n-hexane	C ₂ H ₅ I	20	876	0.29
2, 5-hexanedione	C ₄ H ₁₀ O	20	1006	0.336
n-hexanol	C ₄ H ₁₀ O	25	985	0.311
Hexahydrobenzene	C ₂ H ₄ Br ₂	25	995	0.79
Hexahydrophenol	C ₂ H ₄ Cl ₂	25	1193	0.61
Hecamethylene	C ₅ H ₁₂	25	1248	1.31
2-hydroxy-toluene	C7H8O	20	1541	4.29 (40°C)
3-hydroxy-toluene	C ₇ H ₈ O	20	1500	5.979 (40°C)
lodo-benzene	C ₆ H ₅ I	20	1114	0.954
lodo-ethane	C ₂ H ₅ I	20	876	0.29
lodod-methane	CH ₃ I	25	978	0.211
Isobutyl acetate	C ₆ H ₁₂ O	27	1180	

Substance	Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
Isobutanol	C ₂ H ₆ O ₂	25	1212	, ,
Iso-butane		25	1219.8	0.34
Isopentane	C ₅ H ₁₂	25	980	0.34
Isopropanol (46)	C ₃ H ₈ O	20	1170	2.718
Isopropyl alcohol	C ₃ H ₈ O	20	1170	2.718
Kerosene		25	1324	
Ketohexamethylene	C ₆ H ₁₀ O	25	1423	
Mercury	Hg	20	1451	0.114
Mesityloxide	C ₆ H ₁₆ O	25	1310	
Methanol	CH₄O	25	1076	0.695
Methyl acetate	C ₃ H ₆ O ₂	20	1181	0.411
o-methylaniline	C ₇ H ₉ N	25	1618	4.394 (20°C)
4-methylaniline	C ₇ H ₉ N	25	1480	1.863 (50°C)
Methyl alcohol	CH₄O	25	1076	0.695
Methyl benzene	C ₇ H ₈	20	1328	0.644
2-methyl-butane	C ₅ H ₁₂	25	980	0.34
Methyl carbinol	C ₂ H ₆ O	25	1207	1.396
Methyl-chloroform	C ₂ H ₃ Cl ₃	25	985	0.902 (20°C)
Methyl-cyanide	C ₂ H ₃ N	25	1290	0.441
3-methyl cyclohexanol	C ₇ H ₁₄ O	25	1400	
Methylene chloride	CH ₂ Cl ₂	25	1070	0.31
Methylene iodide	CH ₂ I ₂	25	980	
Methyl formate	C ₂ H ₄ O ₂	25	1127	
Methyl iodide	CH₃I	25	978	0.211
a-methyl napthalene	C ₁₁ H ₁₀	25	1510	
2-mehtylphenol	C ₇ H ₈ O	20	1541	4.29 (40°C)
3-methylphenol	C ₇ H ₈ O	20	1500	5.979 (40°C)
n-hexanol	C ₄ H ₁₀ O	25	985	0.311
Milk, homogenized		25	1548	
Morpholine	C₄H ₉ NO	25	1442	
Naphtha		25	1225	
Nitrobenzene	C ₆ H ₅ NO ₂	20	1473	1.665
Nitromethane	CH ₃ NO ₂	25	1300	0.549
Nonane	C ₉ H ₂ O	25	1207	0.99 (20°C)
1-nonene	C ₉ H ₁₈	25	1207	
Octane	C ₈ H ₁₈	25	1172	0.73
n-octane	C ₈ H ₁₈	20	1192	0.737 (25°C)
1-octane	C ₈ H ₁₈	25	1175.5	

Substance	Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m²s x 10-6)
Oil of camphor		25	1390	
Sassafrassy				
Oil, car (SAE 20a.30)		25	870	190
Oil, castor	C ₁₁ H ₁₀ O ₁₀	25	1477	0.670
Oil, diesel		25	1250	
Oil, fuel AA gravity		25	1485	
Oil (Lubricating X200)		25	1530	
Oil (olive)		25	1431	100
Oil (peanut)		25	1458	
Oil (sperm)		25	1440	
Oil, 6		22	1509	
2, 2-oxydiethanol	C ₄ H ₁₀ O ₃	25	1586	
Pentachloroethane	C ₂ HCl ₅	25	1082	
Pentalin	C ₂ HCl ₅	25	1082	
Pentane	C ₅ H ₁₂	25	1020	0.363
n-pentane	C ₅ H ₁₂	20	1032	0.366
Perchlorocyclo- pentadiene	C ₅ H ₆	25	1150	
Perchloroethylene	C ₂ Cl ₄	25	1036	
Perchloro-1-hepten	C ₇ F ₁₄	25	583	
Perfluoro-n-hexane	C ₆ F ₁₄	25	508	
Phene	C ₆ H ₆	25	1306	0.711
b-phenyl acrolein	C ₉ H ₈ O	25	1554	
Phenyl amine	C ₆ H ₅ NO ₂	25	1639	3.63
Phenyl bromide	C ₆ H₅Br	20	1170	0.693
Phenyl chloride	C ₆ H₅CI	25	1273	0.722
Phenyl iodide	C ₆ H ₅ I	20	1114	0.954(15°C)
Phenyl methane	C ₇ H ₈	20	1328	0.644
3-Phenyl propenal	C ₉ H ₈ O	25	1554	
Phthalardione	C ₈ H ₄ O ₃	125	1125	
Pimelic ketone	C ₆ H ₁₀ O	25	1423	
Plexiglas, lucite acrylic		25	2651	
Refrigerant 11	CCI ₉ F	0	828.3	
Propane	C ₃ H ₈ O ₃	-45	1003	
1, 2, 3-propanetriol	C ₃ H ₈ O ₃	25	1904	0.757 x 10 ⁻³
1-propanol	C ₃ H ₈ O	20	1222	
2-propanol	C ₃ H ₈ O	20	1170	2.718
2-propanone	C ₃ H ₈ O	25	1174	0.399
Propene	C ₃ H ₆	-13	963	
n-propyl acetate	C ₅ H ₁₀ O ₂	2	1280	
-			•	

Substance	Form Index	Temp. (OC)	Sound Speed (m/s)	Kinematic Viscosity (m ² s x 10 ⁻⁶)
1, 1, 2-trichloro- 1, 2, 2-trifluoro- etham	C ₆ H ₁₅ N	0	783.7	
Triethylamine	C ₆ H ₁₅ N	25	1123	
Triethylene glycol	$C_6H_{14}O_4$	25	1608	
1, 1, 1-trifluoro- 2-chloro-2-bromo- ethane	C ₂ HClBrF ₃	25	693	
1, 2, 2-trifluorotrichlo- ethane (Freon 113)	CCI ₂ F-CCIF ₂	0	783.7	
d-1, 3,3- trimethylnorcamphor	C ₁₀ H ₁₆ O	25	1320	
Trinitritoluene	$C_7H_5(NO_2)_3$	81	1610	
Turpentine		25	1255	1.4
Unisis 800		25	1346	
Water, distilled	H ₂ O	20	1482	1.00
Water, heavy	D_2O	20	1388	1.129
Water, sea		20	1520	1.00
Wood alcohol	CH₄O	25	1076	0.695
m-xylene	C ₈ H ₁₀	20	1343	0.749 (15°C)
o-xylene	C ₈ H ₁₀	25	1331.5	0.903 (200C)
p-xylene	C ₈ H ₁₀	20	1334	0.662
Xylene hexafluoride	$C_8H_4F_6$	25	879	0.613

Pipe Dimensions: PVC

			PV0	C IPS CLA	ASS		Schedu	le PVC
	minal meter	100 SDR-41	100 SDR- SDR- SDR- SDR-21 S		315 SDR- 13.5	Sch. 40	Sch. 80	
	O.D.		1.315	1.315	1.315	1.315	1.315	1.315
1"	Wall		0.052	0.060	0.063	0.097	0.133	0.179
	I.D.		1.211	1.195	1.189	1.121	1.049	0.957
	O.D.		1.900	1.900	1.900	1.900	1.900	1.900
1-	Wall		0.060	0.073	0.090	0.141	0.145	0.200
	I.D.		1.780	1.754	1.720	1.618	1.610	1.500
	O.D.		2.375	2.375	2.375	2.375	2.375	2.375
2"	Wall		0.073	0.091	0.113	0.176	0.154	0.218
	I.D.		2.229	2.193	2.149	2.023	2.067	1.939
	O.D.		2.875	2.875	2.875	2.875	2.875	2.875
2- 1/2"	Wall		0.066	0.110	0.137	0.213	0.203	0.276
1/2	I.D.		2.699	2.655	2.601	2.449	2.469	2.323
	O.D.	3.500	3.500	3.500	3.500	3.500	3.500	3.500
3"	Wall	0.085	0.108	0.135	0.187	0.259	0.216	0.300
	I.D.	3.330	3.284	3.230	3.166	2.962	3.068	2.900
	O.D.	4.500	4.500	4.500	4.500	4.500	4.500	4.500
4"	Wall	0.110	0.138	0.173	0.214	0.333	0.237	0.337
	I.D.	4.280	4.224	4.154	4.072	3.384	4.026	3.826
	O.D.	5.563	5.563	5.563	5.563		5.563	5.563
5"	Wall	0.136	0.171	0.214	0.265		0.258	0.375
	I.D.	5.291	5.221	5.135	5.033		5.047	4.813
	O.D.	6.625	6.625	6.625	6.625		6.625	6.625
6"	Wall	0.162	0.205	0.255	0.316		0.280	0.432
	I.D.	6.301	6.215	6.115	5.993		6.065	5.781
	O.D.	8.625	8.625	8.625	8.625		8.625	8.625
8"	Wall	0.210	0.265	0.332	0.411		0.322	0.500
	I.D.	8.205	8.095	7.961	7.803		7.981	7.625

Nor	ninal			PVC PI	P CLASS		
	neter	100 Foot Head	63 SDR-64	80 SDR-51	100 SDR-41	125 SDR-32.5	160 SDR-26
	O.D.			4.130	4.130	4.130	4.130
4"	Wall			0.081	0.101	0.127	0.159
	I.D.			3.968	3.928	3.676	3.812
	O.D.						
5"	Wall						
	I.D.						
	O.D.	6.140		6.140	6.140	6.140	6.140
6"	Wall	0.120		0.120	0.150	0.189	0.236
	I.D.	5.900		5.900	5.840	5.762	5.666
	O.D.	8.160		8.160	8.160	8.160	8.160
8"	Wall	0.087		0.160	0.199	0.251	0.314
	I.D.	7.986		7.840	7.762	7.658	7.532

Pipe Dimensions: PVC

			PVC	IPS CLA	ASS		Schedu	le PVC
	ninal neter	100 SDR-41	125 SDR- 32.5	160 SDR- 26	200 SDR-21	315 SDR- 13.5	Sch. 40	Sch. 80
	O.D.		1.315	1.315	1.315	1.315	1.315	1.315
1"	Wall		0.052	0.060	0.063	0.097	0.133	0.179
	I.D.		1.211	1.195	1.189	1.121	1.049	0.957
	O.D.		1.900	1.900	1.900	1.900	1.900	1.900
1- 1/2"	Wall		0.060	0.073	0.090	0.141	0.145	0.200
.,,_	I.D.		1.780	1.754	1.720	1.618	1.610	1.500
	O.D.		2.375	2.375	2.375	2.375	2.375	2.375
2"	Wall		0.073	0.091	0.113	0.176	0.154	0.218
	I.D.		2.229	2.193	2.149	2.023	2.067	1.939
	O.D.		2.875	2.875	2.875	2.875	2.875	2.875
2- 1/2"	Wall		0.066	0.110	0.137	0.213	0.203	0.276
.,_	I.D.		2.699	2.655	2.601	2.449	2.469	2.323
	O.D.	3.500	3.500	3.500	3.500	3.500	3.500	3.500
3"	Wall	0.085	0.108	0.135	0.187	0.259	0.216	0.300
	I.D.	3.330	3.284	3.230	3.166	2.962	3.068	2.900
	O.D.	4.500	4.500	4.500	4.500	4.500	4.500	4.500
4"	Wall	0.110	0.138	0.173	0.214	0.333	0.237	0.337
	I.D.	4.280	4.224	4.154	4.072	3.384	4.026	3.826
	O.D.	5.563	5.563	5.563	5.563		5.563	5.563
5"	Wall	0.136	0.171	0.214	0.265		0.258	0.375
	I.D.	5.291	5.221	5.135	5.033		5.047	4.813
	O.D.	6.625	6.625	6.625	6.625		6.625	6.625
6"	Wall	0.162	0.205	0.255	0.316		0.280	0.432
	I.D.	6.301	6.215	6.115	5.993		6.065	5.781
	O.D.	8.625	8.625	8.625	8.625		8.625	8.625
8"	Wall	0.210	0.265	0.332	0.411		0.322	0.500
	I.D.	8.205	8.095	7.961	7.803		7.981	7.625

Nor	minal			F	VC Cast	ron O.D.				PVC
	neter	100 psi DR-41	125 psi DR-32.5	100 psi DR-25	165 psi DR-25	200 psi DR-21	150 psi DR-18	235 psi DR-18	200 psi DR-14	Sewer DR-35
	O.D.			4.800			4.800			4.125
4"	Wall			0.192			0.267			0.125
	I.D.			4.416			4.266			3.875
	O.D.									
5"	Wall									
	I.D.									
	O.D.			6.900			6.900		6.900	6.275
6"	Wall			0.276			0.383		0.493	0.180
	I.D.			6.348			6.134		5.914	5.915
	O.D.			9.050			9.050		9.050	8.400
8"	Wall			0.362			0.503		0.646	0.240
	I.D.			8.326			8.044		7.758	7.920

Pipe Dimensions: Steel

					С	arbon S	Steel						Double
Nom Diam						Schedu	ıle				Standard Weight	Extra Strong	Extra
Diam	ClGi	10	20	40	60	80	100	120	140	160	Weight	Ollong	Strong
	O.D.			1.315		1.315				1.315	1.315	1.315	1.315
1"	Wall			0.133		0.179				0.250	0.133	0.179	0.358
	I.D.			1.049		0.957				0.815	1.049	0.957	0.559
	O.D.			1.900		1.900				1.900	1.900	1.900	1.900
1-1/2"	Wall			0.145		0.200				0.281	0.145	0.200	0.400
	I.D.			1.610		1.500				1.338	1.610	1.500	1.100
	O.D.			2.375		2.375				2.375	2.375	2.375	2.375
2"	Wall			0.154		0.218				0.343	0.154	0.218	0.436
	I.D.			2.067		1.939				1.689	2.067	1.939	1.503
	O.D.			2.875		2.875				2.875	2.875	2.875	2.875
2-1/2"	Wall			0.203		0.276				0.375	0.203	0.276	0.552
	I.D.			2.469		2.323				2.125	2.469	2.323	1.771
	O.D.			3.500		3.500				3.500	3.500	3.500	3.500
3"	Wall			0.216		0.300				0.438	0.216	0.300	0.600
	I.D.			3.068		2.900				2.624	3.068	2.900	2.300
	O.D.			4.000		4.000					4.000	4.000	4.000
3-1/2"	Wall			0.266		0.318					0.318	0.636	0.083
	I.D.			3.548		3.364					3.548	3.364	2.728
	O.D.			6.625		6.625		6.625		6.625	6.625	6.625	6.625
6"	Wall			0.280		0.432		0.562		0.718	0.280	0.432	0.897
	I.D.			6.065		5.761		5.501		5.189	6.065	5.761	4.897
	O.D.		8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625	8.625
8"	Wall		0.250	0.322	0.406	0.500	0.593	0.718	0.812	0.906	0.322	0.500	0.875
	I.D.		8.125	7.981	7.813	7.625	7.439	7.189	7.001	6.813	7.981	7.625	6.875

			Stai	nless Ste	el						
Nom Diam			Schedule								
Diam	Oto:	5	10	40	80						
	O.D.	1.315	1.315	1.315	1.315						
1"	Wall	0.065	0.109	0.133	0.179						
	I.D.	1.185	1.097	1.049	0.957						
	O.D.	1.900	1.900	1.900	1.900						
1-1/2"	Wall	0.065	0.109	0.145	0.200						
	I.D.	1.770	1.682	1.610	1.500						
	O.D.	2.375	2.375	2.375	2.375						
2"	Wall	0.065	0.109	0.154	0.218						
	I.D.	2.245	2.157	2.067	1.939						
	O.D.	2.875	2.875	2.875	2.875						
2-1/2"	Wall	0.083	0.120	0.203	0.276						
	I.D.	2.709	2.635	2.469	2.323						

			Stai	nless Ste	el					
1	Nominal Diameter		Schedule							
Diam		5	10	40	80					
	O.D.	3.500	3.500	3.500	3.500					
3"	Wall	0.083	0.120	0.216	0.300					
	I.D.	3.334	3.260	3.068	2.900					
	O.D.	4.000	4.000	4.000	4.000					
3-1/2"	Wall	0.120	0.120	0.226	0.318					
	I.D.	3.834	3.760	3.548	3.364					
	O.D.	6.625	6.625	6.625	6.625					
6"	Wall	0.109	0.134	0.280	0.432					
	I.D.	6.407	6.357	6.065	5.761					
	O.D.	8.625	8.625	8.625	8.625					
8"	Wall	0.109	0.148	0.322	0.500					
	I.D.	8.407	8.329	7.981	7.625					

Pipe Dimensions: Welded Steel, Aluminum, and Copper

			C	opper Tubi	ing	Copper		Welde	d Steel	
Nom	ninal neter	Aluminum	Туре			& Brass	16	14	12	10
Dian	ictoi		K	L	М	Pipe	Gage	Gage	Gage	Gage
	O.D.		1.125	1.125	1.125	1.315				
1"	Wall		0.065	0.050	0.035	0.127				
	I.D.		0.995	1.025	1.055	1.062				
	O.D.		1.625	1.625	1.625	1.900				
1-1/2"	Wall		0.072	0.060	0.027	0.150				
	I.D.		1.481	1.505	1.571	1.600				
	O.D.		2.125	2.125	2.125	2.375				
2"	Wall		0.083	0.070	0.058	0.157				
	I.D.		1.959	1.985	2.009	2.062				
	O.D.	2.500	2.625	2.625	2.625	2.875				
2-1/2"	Wall	0.050	0.095	0.080	0.065	0.188				
	I.D.	2.400	2.435	2.495	2.500	2.500				
	O.D.	3.000	3.125	3.125	3.125	3.500				
3"	Wall	0.050	0.109	0.090	0.072	0.219				
	I.D.	2.900	2.907	2.945	2.981	3.062				
	O.D.		3.625	3.625	3.625	4.000				
3-1/2"	Wall		0.120	0.100	0.083	0.250				
	I.D.		3.385	3.425	3.459	3.500				
	O.D.	4.000	4.125	4.125	4.125	4.500	4.000	4.000	4.000	4.000

			Copper Tubing			Connor	Welded Steel				
_	minal meter	Aluminum	Туре		Copper & Brass	16	14	12	10	7	
Diai	illetei		K	L	М	Pipe	Gage	Gage	Gage	Gage	Gage
4"	Wall	0.063	0.134	0.110	0.095	0.250	0.060	0.075	0.0105	0.135	
4"	I.D.	3.874	3.857	3.905	3.935	4.000	3.880	3.851	3.791	3.731	
	O.D.	5.000	5.125	5.125	5.125	5.563	5.000	5.000	5.000	5.000	5.000
5"	Wall	0.063	0.160	0.125	0.109	0.250	0.060	0.075	0.105	0.135	0.179
	I.D.	4.874	4.805	4.875	4.907	5.063	4.880	4.851	4.791	4.731	4.641
	O.D.	6.000	6.125	6.125	6.125	6.625	6.000	6.000	6.000	6.000	6.000
6"	Wall	0.063	0.192	0.140	0.122	0.250	0.060	0.075	0.105	0.135	0.179
	I.D.	5.874	5.741	5.845	5.881	6.125	5.880	5.851	5.791	5.731	5.641
	O.D.	8.000	8.125	8.125	8.125	8.625	8.000	8.000	8.000	8.000	8.000
8"	Wall	0.094	0.271	0.200	0.170	0.313	0.060	0.075	0.105	0.135	0.179
	I.D.	7.812	7.583	7.725	7.785	8.000	7.880	7.851	7.791	7.731	7.641

Pipe Dimensions: Galvanized Steel Tubing and Pipe

Nominal Dia	Nominal Diameter		Sch 10	Sch 40
	O.D.	1.3150	1.3150	1.3150
1 in.	Wall	0.0650	0.0830	0.1090
	I.D.	1.1850	1.1490	1.0970
	O.D.	1.9000	1.9000	1.9000
1½ in.	Wall	0.0650	0.1090	0.1450
	I.D.	1.7700	1.6820	1.6100
	O.D.	2.3750	2.3750	2.3750
2 in.	Wall	0.0650	0.1090	0.1540
	I.D.	2.2450	2.1570	2.0670
	O.D.	2.8750	2.8750	2.8750
2½ in.	Wall	0.0830	0.1200	0.2030
	I.D.	2.7090	2.6350	2.4690
	O.D.	3.5000	3.5000	3.5000
3 in.	Wall	0.0830	0.1200	0.2160
	I.D.	3.3340	3.2600	3.0680

Nominal Dia	meter	Sch 5	Sch 10	Sch 40
	O.D.	4.5000	4.5000	4.5000
4 in.	Wall	0.0830	0.1200	0.2370
	I.D.	4.3340	4.2600	4.0260
	O.D.	5.5630	5.5630	5.5630
5 in.	Wall	0.1090	0.1340	0.2580
	I.D.	5.3450	5.2950	5.0470
	O.D.	6.6250	6.6250	6.6250
6 in.	Wall	0.1090	0.1340	0.2800
	I.D.	6.4070	6.3570	6.0650

Nominal Diameter		Sch 5	Sch 10	Sch 20	Sch 30	Sch 40
	O.D.	8.6250	8.6250	8.6250	8.6250	8.6250
8 in.	Wall	0.1090	0.1480	0.2500	0.2770	0.3220
	I.D.	8.4070	8.3290	8.1250	8.0710	7.9810

Nominal Dia	meter	Std	Sch 60	Sch 80	E.H.
	O.D.			1.3150	
1.000	Wall			0.1790	
	I.D.			0.9570	
4 500 /4	O.D.			1.9000	
1.500 (1- 1/2")	Wall			0.2000	
1/2 /	I.D.			1.5000	
	O.D.			2.3750	
2.000	Wall			0.2180	
	I.D.			1.9390	
2 500 /2	O.D.			2.8750	
2.500 (2- 1/2")	Wall			0.2760	
172)	I.D.			2.3230	
	O.D.			3.5000	
3.000	Wall			0.3000	
	I.D.			2.9000	
	O.D.		4.5000	4.5000	
4.000	Wall		0.2810	0.3370	
	I.D.		3.9380	3.8260	
	O.D.			5.5630	
5.000	Wall			0.3750	
	I.D.			4.8130	
	O.D.			6.6250	
6.000	Wall			0.4320	
	I.D.			5.7610	
	O.D.	7.6250			7.6250
7.000	Wall	0.3010			0.5000
	I.D.	7.0230			6.6250
	O.D.		8.6250	8.6250	
8.000	Wall		0.4060	0.5000	
	I.D.		7.8130	7.6250	
	O.D.	9.6250			9.6250
9.000	Wall	0.3420			0.5000
	I.D.	8.9410			8.6250

Nominal Dia	meter	Sch 120	Sch 140	Sch 160	Double E.H.
	O.D.			1.3150	1.3150
1.000	Wall			0.2500	0.4000
	I.D.			0.8150	0.5150
4 500 (4	O.D.			1.9000	1.9000
1.500 (1- 1/2")	Wall			0.2810	0.4000
,	I.D.			1.3380	1.1000
	O.D.			2.3750	2.3750
2.000	Wall			0.3430	0.4360
	I.D.			1.6890	1.5030
2.500 (2-	O.D.			2.8750	2.8750
1/2")	Wall			0.3750	0.5520
,	I.D.			2.1250	1.7710
	O.D.			3.5000	3.5000
3.000	Wall			0.4370	0.6000
	I.D.			2.6260	2.3000
	O.D.	4.5000		4.5000	4.5000
4.000	Wall	0.4370		0.5310	0.6740
	I.D.	3.6260		3.4380	3.1520
	O.D.	5.5630		5.5630	5.5630
5.000	Wall	0.5000		0.6250	0.7500
	I.D.	4.5630		4.3130	4.0630
	O.D.	6.6250		6.6250	6.6250
6.000	Wall	0.5620		0.7180	0.8640
	I.D.	5.5010		5.1890	4.8970
	O.D.				7.6250
7.000	Wall				0.8750
	I.D.				5.8750
	O.D.	8.6250	8.6250	8.6250	8.6250
8.000	Wall	0.7180	0.8120	0.9060	0.8750
	I.D.	7.1890	7.0010	6.8130	6.8750
	O.D.				
9.000	Wall		ļ		
	I.D.		<u> </u>		

Pipe Dimensions: Iron

Nominal		DUCTILE IRON										
	nınaı neter	CLASS										
Diai	ilotoi	50	51	52	53	54	55	56				
	O.D.		3.960	3.960	3.960	3.960	3.960	3.960				
3"	Wall		0.250	0.280	0.310	0.340	0.370	0.400				
	I.D.		3.460	3.400	3.340	3.280	3.220	3.160				
	O.D.		4.800	4.800	4.800	4.800	4.800	4.800				
4"	Wall		0.260	0.290	0.320	0.350	0.380	0.410				
	I.D.		4.280	4.220	4.160	4.100	4.040	3.980				
	O.D.	6.900	6.900	6.900	6.900	6.900	6.900	6.900				
6"	Wall	0.250	0.280	0.310	0.340	0.370	0.400	0.430				
	I.D.	6.400	6.340	6.280	6.220	6.160	6.100	6.040				
	O.D.	9.050	9.050	9.050	9.050	9.050	9.050	9.050				
8"	Wall	0.270	0.300	0.330	0.360	0.390	0.420	0.450				
	I.D.	8.510	8.450	8.390	8.330	8.270	8.210	8.150				

		CAST IRON										
	ninal neter	CLASS										
Diai	ilotoi	Α	В	С	D	E	F	G	Н			
	O.D.	3.960	3.960	3.960	3.960							
3"	Wall	0.390	0.420	0.450	0.480							
	I.D.	3.020	3.120	3.060	3.000							
	O.D.	4.800	5.000	5.000	5.000							
4"	Wall	0.420	0.450	0.480	0.520							
	I.D.	3.960	4.100	4.040	3.960							
	O.D.	6.900	7.100	7.100	7.100	7.220	7.220	7.380	7.380			
6"	Wall	0.440	0.480	0.510	0.550	0.580	0.610	0.650	0.690			
	I.D.	6.020	6.140	6.080	6.000	6.060	6.000	6.080	6.000			
	O.D.	9.050	9.050	9.300	9.300	9.420	9.420	9.600	9.600			
8"	Wall	0.460	0.510	0.560	0.600	0.660	0.660	0.750	0.800			
	I.D.	8.130	8.030	8.180	8.100	8.100	8.100	8.100	8.000			

Ordering Information

Mfr. Part No.	Code	Description
Transmitters 3-3350-1 3-3350-2	159 001 081 159 001 082	Transmitter 110 VAC, 4 to 20 mA output, wall mount Transmitter 220 VAC, 4 to 20 mA output, wall mount
Sensors 3-3550-100 3-3550-200	159 001 083 159 001 084	DN 25 - DN 100 (1 in. to 4 in.) Ultrasonic clamp-on sensor DN 50 - DN 225 (2 in. to 9 in.) Ultrasonic clamp-on sensor

Accessories and Replacement Parts

Mfr. Part No.	Code	Description
Signal Cables		
3-3550.393	159 001 099	Stainless steel belt pair for sensor frame
3-3550.390	159 001 085	Pipe clamp kit
3800-1000	159 001 086	Tube of silicone grease
3800-1001	159 001 363	Silicone-free grease
3800-1002	159 001 364	RTV compound
3-3550.395	159 001 087	Sensor heads, matched pair, 1 in. to 4 in.
3-3550.396	159 001 095	Sensor heads, matched pair, 2 in. to 9 in.
3-3550.075	159 001 090	Cable, 5m pair (standard)
3-3550.076	159 001 091	Cable, 10m pair
3-3550.077	159 001 092	Cable, 15m pair
3-3550.078	159 001 093	Cable, 20m pair
3-3550.079	159 001 094	Cable, 30m pair

- Transmitters are supplied with pipe clamp kit.
- Sensors are supplied with two mounting belts, 5m cable pair and tube of silicone grease.

+GF+

George Fischer Signet, Inc. 3401 Aerojet Avenue, El Monte, CA 91731-2882 U.S.A. • Tel. (626) 571-2770 • Fax (626) 573-2057 For Worldwide Sales and Service, visit our website: www.gfsignet.com